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Preface

This Bachelor-Thesis gives an overview of mapping class groups and linear
representations thereof. The main goal of the thesis is to understand and explain
the proof of Mustafa Korkmaz, saying that for g ≥ 3 and n ≤ 2g − 1, every
homomorphism from the mapping class group of an orientable surface of genus g
to GL(n,C) is trivial.[Kor11]

In the �rst part of the thesis there will be given a general overview and intro-
duction to the mapping class group. The second part will deal with the proof of
Korkmaz and is based largely on his recent paper [Kor11], explaining and extend-
ing parts of it.

I tried to include most of the de�nitions of the mathematical vocabulary used
in this paper, but a knowledge about linear algebra will be essential for the under-
standing of some of the proofs given.

This thesis was typeset using LATEX. Citations were managed using Citavi1,
Zotero2 and BibTeX. Revision control using Mercurial3, TortoiseHG4 and bitbucket5

was used during the process of creation of this thesis.
Graphics were mostly done by hand and and some of them in colour. I apologize

at this point that some of those graphics might be less-comprehensible if the thesis
is printed or viewed without colour, even though it isn't essential to understand the
graphics to comprehend the text. The graphics merely are there as examples and
complement the text to illustrate points and help visualizing concepts.

1http://www.citavi.com/
2http://www.zotero.org
3http://mercurial.selenic.com/
4http://tortoisehg.bitbucket.org/
5http://www.bitbucket.org/
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Part 1

Mapping Class Groups





CHAPTER 1

Introduction and De�nitions

Drink wine, this is life eternal,
This, all that youth will give you:
It is the season for wine, roses and friends drinking
together.
Be happy for this moment � it is all life is.

� Omar Khayyám

1. Surfaces, Curves and Homeomorphisms

Definition 1. Let f : X → Y be a function between two topological spaces. If f
is continuous, bijective and f−1 is continuous, then f is called a homeomorphism1

and the spaces X and Y are called homeomorphic.[Mun00]

Remark 1. A homeomorphism stretches and deforms the space continuously
without puncturing or breaking it.

The set of all self-homeomorphisms of a topological space X, together with the
operation of function composition build a group Homeo(X) called the homeomor-
phism group of X[Haz88].

Definition 2. A surface S is a 2-dimensional manifold (short 2-manifold).
The meaning of this is that S is hausdor�, 2nd-countable and locally homeomorphic
to euclidean space.[FM12]

Example 1. Figures 1, 2, 3 and 4 show various examples of surfaces.

Definition 3. The product A := S1 × [0, 1] is called (closed) annulus.

Example 2. Figure 5 shows an example of an annulus.

Remark 2. A homeomorphism between surfaces is orientation preserving if
the face of an imagined clock on the surface is only rotated and moved, streched and
so on by the homeomorphism but not mirrored.

1I would have preferred the term bicontinuous function or topological isomorphism

to avoid confusion with homomorphism, but the term homeomorphism is widely used through
literature.

Figure 1. A genus g=0 surface
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Figure 2. A genus g=1 surface

Figure 3. A genus g=2 surface

Figure 4. A genus g=3 surface
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Figure 5. An annulus

Geometrically the annulus is a closed disc with a smaller open disc cut out
from the center, such that the resulting surface is closed. An annulus can be
embedded in a plane, if the plane is parametrised using polar coordinates (ϕ, r)
then (ϕ, r) 7→ (ϕ, r + 1) is an embedding. Topologically the (closed) annulus is
equivalent to a (closed) cylinder.

For an oriented surface S let Homeo+(S) denote the group of orientation pre-
serving homeomorphisms of S.

By results of Möbius and Radò (for a proof see for example [Tho92]) surfaces
are classi�ed by the following theorem:

Theorem 1 (Classi�cation of surfaces). Let S be a compact, connected, ori-
entable surface. S is classi�ed up to homeomorphism by the number of boundary
components b ≥ 0 and the genus g ≥ 0 of the surface. Starting from a 2-
dimensional sphere, the genus g speci�es how many tori have been connected to it,
while the number b speci�es how many open discs with disjoint closures have been
removed from it. [FM12,Tho92]

A surface may also be punctured by removing n points from the interior or
equivalently (up to homeomorphism) by removing n closed disjoint discs.
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Definition 4. A continuous map α : S1→S to a surface is called a closed
curve on S. If α is injective (e.g. the curve doesn't have any self-intersections)
then it is called simple. In the text a closed curve will usually be identi�ed with its
image in S.[FM12]

Definition 5 (Homotopy and isotopy of functions). Given two continuous
functions f : X → Y and g : X → Y between two topological spaces, if there is a
continuous function H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) =
g(x), then H is called homotopy and f and g are called homotopic. If X and Y are
topological spaces and for each t ∈ [0, 1] H|X×t =: Ht : X → Y is a homeomorphism
then H is called isotopy, and f and g are called isotopic.[FM12,Mun00]

Remark 3 (Homotopy and isotopy of curves). Especially for simple closed
curves we have that: Let α and β be two simple closed curves. If there exists a
continuous function H : S1 × [0, 1] → S, H is called homotopy, and α and β are
called homotopic. If there is a H such that ∀t ∈ [0, 1] the closed curve H(S1×t) is
simple, then H is called isotopy, and α and β are called isotopic.[FM12,Mun00]

Definition 6. A closed curve α that is not homotopic to a point, puncture or
boundary component is called essential. [FM12]

Definition 7. Let Homeo0(S) denote the normal subgroup of Homeo(S) of
homeomorphisms isotopic to the identity.

Proposition 1. Let α and β be two essential simple closed curves in a surface
S, then:

α isotopic to β ⇔ α homotopic to β

Proof. For a proof see for example [FM12]. �

Homotopy is clearly an equivalence relation [Mun00]. Thus it is possible to
de�ne an equivalence class on homotopic curves.

Notation 1. Given a simple closed curve α, let [α] denote its homotopy equiv-
alence class. If it is clear from the context a simple closed curve is usually identi�ed
with its homotopic equivalence class leaving out the square brackets.

Remark 4. The de�nition of a closed curve and its homotopy classes can be
generalised as follows: Let f : Sn → S be a continuous map and let b0 ∈ im(f)
and a0 ∈ Sn with f(a0) = b0. For n ≥ 1 the set of homotopy classes of such maps
is a group πn(S, b0) called n-th homotopy group. The group operation is given by
joining two curves together at the basepoint. For an exact de�nition see [Hat02].

Definition 8. Given two simple closed curves α and β on a surface S, where
[α] and [β] are the respective homotopy classes. De�ne the geometric intersec-
tion number as

i([α], [β]) = min{|α ∩ β| : α ∈ [α], β ∈ [β]}
by abuse of notation i(α, β) will mean i([α], [β]).[FM12]

Given a simple closed curve in a surface it is intuitively possible to cut the
surface open along the curve. The resulting surface can be either connected or not.
Given two homotopic simple closed curve, cutting along one curve will always yield
a surface which is homeomorphic to the surface resulting by cutting about the other
curve.

Definition 9. Let α be a simple closed curve on a surface S. Let Sα denote
the surface obtained by cutting S along α, such that there is an homeomorphism
h between the two resulting boundary components and gluing along h � meaning
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Figure 6. A nonseparating curve α in a surface S and the result-
ing cut surface Sα

Figure 7. A separating curve α in a surface S and the resulting
cut (separated) surface Sα

building the quotient Sα/(x ∼ h(x)) � will yield back a surface homeomorphic to
S such that the image of the boundary components under this quotient map is α.
If the resulting surface Sα is connected, then α is called nonseparating otherwise
separating.[FM12]

Example 3. Figures 6 and 7 show examples of nonseparating respectively sep-
arating curves in a surface and their resulting cut surface.

Proposition 2. Any two nonseparating simple closed curves α, β in a surface
S yield homeomorphic Sα, Sβ. And there is a homeomorphism h : S → S of S such
that h(α) = β. [FM12]

Proof. Given any two nonseparating simple closed curves α and β in a surface
S with genus g, let Sα and Sβ denote the corresponding surfaces resulting by cutting
along α respectiviely along β. The resulting surfaces will have the same number of
boundary components and the same number of punctures. While the genus of the
cut surfaces will be g−1. Thus by the classi�cation of surfaces Sα is homeomorphic
to Sβ . By the de�nition of the cut surfaces there are homeomorphisms hα and
hβ mapping each of the two cut boundary components in the respective surface.
Choose a homeomorphism h : Sα → Sβ respecting the equivalences x ∼ hα(x) and
y ∼ hβ(y). Thus this extends to a homeomorphism S → Sα → Sβ → S on S,
taking α to β. �

The same is not true for separating curves.

Proposition 3 (Classi�cation of simple closed curves on a surface[FM12]).
Let α and β be two simple closed curves on a surface S and let Sα and Sβ denote
the corresponding cut surfaces. Then the following two conditions are equivalent:

(1) There is an orientation-preserving homeomorphism h : S → S such that
h(α) = β.

(2) There is a homeomorphism h : Sα → Sβ

Proof. See [FM12] for a proof. �

Corollary 1. Any nonseparating simple closed curve is essential.
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Remark 5. For a family of simple closed curves on S, the intersection pattern
of the family roughly means the appearance of the graph induced by the intersections
of the curves. Where each intersection is a vertex and the connecting curves between
each intersection are the edges. For two families A and B of simple closed curves on
S to have the same intersection pattern, means that each family can be ordered in
an n-tuple (α1, α2, . . . , αn) respectively (β1, β2, . . . , βn) such that for any two indices
i, j ∈ {1, . . . , n} the intersection number of the two elements is equal: i(αi, αj) =
i(βi, βj).

Proposition 4 (Change of coordinates principle[FM12]). Let A = (αi)i and
B = (β)i be two families of simple closed curves on S. Such that A and B have
the same intersection pattern (i(αi, αj) = i(βi, βj)). Then there exists a self-
homeomorphism h : S → S such that h(αi) = βi.

2. Mapping Class Groups

Given a surface S one is interested to study certain manipulations on it, namely
self-homeomorphisms of the surface. The group Homeo(S) was already de�ned
earlier. Recall that

• Homeo(S) is the group of self-homeomorphisms of the surface S
• Homeo+(S) is the group of orientation-preserving self-homeomorphisms
of the surface S
• Homeo0(S) is the normal subgroup of Homeo(S) of homeomorphisms iso-
topic to the identity.
• Let Diff+(S, ∂S) be the group of orientation-preserving di�eomorphisms
of S that are the identity on the boundary.
• Let Homeo(S, ∂S), Homeo+(S, ∂S) and Homeo0(S, ∂S) denote the respec-
tive groups of homeomorphisms but restricting to the identity on ∂S

Definition 10 (Compact-open topology on Homeo+(S), see for example [CR78]
and [Sch75]). Let S be a surface. For a compact subset K of S and an open subset
U of S de�ne Ω(K,U) := {f ∈ Homeo+(S) : f(K) ⊂ U}. Then the compact-open
topology on Homeo+(S) is generated by all sets of the form Ω(K,U) with K ⊂ S
compact and U ⊂ S open.

In the following text it will usually be assumed that Homeo+(S) is endowed
with the compact-open topology. The group Homeo+(S) itself is usually too big to
study. Intuitively it makes sense to treat homeomorphisms isotopic to each other
the same. For example if for all closed simple essential curves on a surface and a
homeomorphism taking those curves to some curves, if we can deform those curves
without cutting them and without self intersections to get back the original curves,
then the homeomorphism was not so interesting to begin with. We therefore build
the quotient Homeo+(S, ∂S)/Homeo0(S, ∂S).

Definition 11 (Mapping Class Group, [FM12]). Let S be a surface. Then let

Mod(S) := Homeo+(S, ∂S)/Homeo0(S, ∂S)

this group is called the mapping class group of S. Elements of Mod(S) are called
mapping classes.

Notation 2. Elements of the mapping class group are applied right to left in
accordance to notation for functions.

The mapping class group was �rst studied by Max Dehn[Deh38,Deh87].

Proposition 5. The following de�nitions are equivalent (up to isomorphism):

(1) Mod(S) := Homeo+(S, ∂S)/Homeo0(S, ∂S)
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Figure 8. An order 3 element of the mapping class group of a
genus g = 3 surface

(2) Mod(S) := π0(Homeo+(S, ∂S))
(3) Mod(S) := π0(Diff+(S, ∂S))

Remark 6. There are di�erent de�nitions of the mapping class used throughout
literature. For example one can either study oriented or unoriented manifolds. The
mapping class group of the oriented manifolds is an index 2 subgroup of the mapping
class group of unoriented manifolds.

Definition 12. Let S be a surface with n punctures (marked points) in the
interior. Then denote by PMod(S) the subgroup of Mod(S) consisting of elements
that �x each puncture individually. This group is called the pure mapping class
group.

Remark 7. If S doesn't have any punctures then PMod(S) = Mod(S).

Proposition 6 ([FM12]). There is an isomorphism between the mapping
classes of following surfaces and groups as follows (For a proof see [FM12]):

• The mapping class group of the annulus is isomorphic to Z
• The mapping class group of the torus is isomorphic to SL(2,Z)

Example 4. The mapping class group of the sphere is trivial Mod(S2) =
1.[Bir74,FM12]

Example 5. Given a genus g = 3 surface, �gure 8 shows an order 3 element
of Mod(S). Given the fundamental polygon of the torus, a rotation of the polygon
by π/2 gives an element of order 4 in the mapping class group of the torus. If the
mapping class group of the torus is identi�ed with SL(2,Z), then this mapping class
would be represented by the element

(
0 1
−1 0

)
. This is illustrated in �g. 9.

3. Dehn Twists

As with every group, one is interested to know what the generators of the
mapping class group are.

Definition 13 (Twist Map of the Annulus). Let T : A→ A be the map of the
annulus given by (ϕ, r) 7→ (ϕ+ 2πr, r). This map is called (left) twist map of the
annulus. The map T−1 : A → A, (ϕ, r) 7→ (ϕ − 2πr, r) is called right twist map
of the annulus.[DS02,FM12,Bir74]

Example 6. Figure 10 shows an example of a left twist map of the annulus.
Figure 12 shows the same twist map applied to the topologically equivalent cylinder.
Figure 11 shows a right twist map on an annulus.

Now assume assume this twist is done on a cylinder embedded in an arbitrary
surface. This brings us to the following de�nition:
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Figure 9. An order 4 element of the mapping class group of the
torus. The torus is given as a fundamental polygon and embedded
in R3. For visualisation purposes there is an oriented closed curve
drawn in red on the torus.

Figure 10. A (left) twist map applied to the annulus. The action
of the map can be seen in the change of the red curve.

Figure 11. A right twist map applied to the annulus. The action
of the map can be seen in the change of the red curve.

Figure 12. A (left) twist map applied to the cylinder which is
topologically equivalent to the annulus. The action of the map can
be seen in the change of the red curve.

Definition 14 (Dehn Twist, [FM12,CB88,DS02,Bir74,Pap07]). Let S be
an oriented surface and let α be a simple closed curve in S. Let N be a regular
neighbourhood of α and let φ : A→ N be an orientation preserving homeomorphism.
Then de�ne a dehn twist about α as the map2:

tα(x) =

{
φ ◦ T ◦ φ−1(x) , if x ∈ N
x , if x ∈ S −N

2In accordance with the paper of Korkmaz ([Kor11]) Dehn Twists are written using small
letters tα instead of big letters Tα as in the Primer On Mapping Class Groups ([FM12])
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If this twist is taken modulo isotopy, then it is a well de�ned element of the mapping
class group: [tα] = t[α].

Proposition 7 (Well-de�nition of Dehn Twists). Let α, α′ ∈ [α] be two repre-
sentatives of the isotopy class of simple closed curves in a surface S. Let N and N ′

be regular neighbourhoods of α an α′ and φ : A → N and φ′ : A → N ′ orientation
preserving homeomorphisms. Clearly a homotopy h : S1 × [0, 1]→ S between α an
α′ can be extended to a homotopy between φ and φ′.[FM12]

Notation 3. In the text tα will usually mean t[α].

In the text dehn twists will be assumed to be left twists. A dehn twist about
a curve α can be understood easily using various equivalent geometrical interpre-
tations. In the �rst interpretation the curve α of the dehn twist can be seen as an
instruction for any curve intersecting it, to �rst turn left then circle all around α
and �nally turn right. Another view of the twist operation is, to think of cutting
the surface about α then while keeping one neighbourhood of the resulting bound-
ary components �xed, twist the other around by 2π and �nally glue them back
together. It is important to only twist the neighbourhood of one of the resulting
boundary components. If the whole surface would be twisted this would only result
in the identity homeomorphism if α is a separating curve.

It turns out that the mapping class group is generated by dehn twists about
nonseparating simple closed curves on S. This result was already found by Dehn
[Deh87] and later improved by W. B. R. Lickorish [Lic64].

Theorem 2 (Dehn-Lickorish Theorem). Let S be a surface of genus g ≥ 0.
Then: Dehn twists about �nitely many nonseparating simple closed curves generate
the mapping class group of S.

Proof. For a proof see [FM12] or [Lic64] or [Hum79]. �

Proposition 8. Let [α] and [β] be two isotopy classes of closed essential simple
curves in a surface S and let n ∈ Z. Then:

i(tn[α]([β]), [β]) = |n|i([α], [β])2

Proof. See [FM12] for a proof of the proposition. �

Proposition 9. Let [α] and [β] be two isotopy classes of simple closed curves.
Then:

t[α] = t[β] ⇔ [α] = [β]

Proof. �⇐�: clear. �⇒�: Proof by contraposition, Assume that a := [α] 6=
b := [β]. Then try to �nd an isotopy class of simple closed curves c := [γ] such that
i(a, c) = 0 and i(b, c) 6= 0. Then there are two cases to check:

Case 1 (i(a, b) 6= 0): In this case a satis�es the required properties because
i(a, a) = 0 and i(b, a) 6= 0, so with proposition 8 we have i(ta(a), a) =
i(a, a)2 = 0 but i(tb(a), a) = i(b, a)2 6= 0, from this it follows that ta 6= tb
a contradiction.

Case 2 (i(a, b) = 0): Here the curve c is neither a nor b, but can be found
easily. There are various cases to check. If a is separating, then cut along
α ∈ a to get two surface parts one of genus g′ and the other of genus
g − g′ each with a boundary component, continue on that part of the
surface containing b. If b is nonseparating in this cut surface cut along it,
then connect the resulting boundary components with an arc γ, re-glue the
result will be a curve γ intersecting b once but not a. If b was separating
in the cut surface then the genus of the surface containing b must be at
least 2 (otherwise a = b), because a genus 1 surface doesn't contain a
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Figure 13. The various possibilities are shown if a is separating.



12 1. INTRODUCTION AND DEFINITIONS

Figure 14. The various possibilities are shown if a is nonseparating.
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separating curve then there must exist a curve intersecting b. If on the
other hand a is nonseparating cutting along it will result in a surface with
genus g−1 with two boundary components. If b is nonseparating continue
like before by cutting along it, connecting the boundary components with
an arc and then re-glue everything. If b is separating in the cut surface
and if g− 1 = 1 then a = b a contradiction. If g− 1 > 1 proceed as in the
case before. See Figures 13 and 14. Because of the change of coordinates
principle, those cases cover all possibilities. Then again similar as in the
�rst case: i(ta(c), c) = i(a, c)2 = 0 but i(tb(c), c) = i(b, c)2 6= 0.

�

Lemma 1. For any mapping class F ∈ Mod(S) and any isotopy class [α] of
simple closed curves in S:

tF ([α]) = F ◦ t[α] ◦ F−1

Proof. Let f ∈ F , α ∈ [α] and tα ∈ t[α] be representatives such that: tα can
be written as

tα(x) =

{
φ ◦ T ◦ φ−1(x) , if x ∈ N
x , if x ∈ S −Nα

with Nα a regular neighbourhood of α and φ : A→ Nα and with β = f(α). Then
for any regular neighbourhood of β, f ◦ t[α] ◦ f−1 takes the neighbourhood to a
neighbourhood of α twists it and takes it back to the β-neighbourhood. The result
is a twist around tβ = tf(α). For any x ∈ S−Nβ , f−1(x) ∈ S−Nα and so we have
the identity on both sides.[FM12] �

Corollary 2. For any mapping class F ∈ Mod(S) and any isotopy class [α]
of simple closed curves in S:

F ([α]) = [α]⇔ t[α] ◦ F = F ◦ t[α]
Proof. Just multiply by F−1 from the right side and use the lemma from

above. �

Definition 15 (Conjugacy). If [α] and [β] are isotopy classes of nonseparating
simple closed curves in S, and there exists a F ∈ Mod(S) such that:

tβ = F ◦ tα ◦ F−1

then [α] and [β] are called conjugate.[FM12]

Corollary 3. If [α] and [β] are isotopy classes of nonseparating simple closed
curves in S, then there exists a F ∈ Mod(S) such that:

tβ = F ◦ tα ◦ F−1

Proof. This follows from the fact that nonseparating simple closed curves can
be taken to each other by a homeomorphism (Proposition 2), and from the lemma
above. That means there exists a homeomorphism F with F ([α]) = [β]. �

Proposition 10. For any two isotopy classes of simple closed curves [α] and
[β] in a surface S:

t[α] ◦ t[β] = t[β] ◦ t[α] ⇔ i([α], [β]) = 0

Proof. Proposition 8 gives: i(t[α]([β]), [β]) = i([α], [β])2.

t[α] ◦ t[β] = t[β] ◦ t[α] ⇔ t[α] = t[β] ◦ t[α] ◦ t−1[β]

⇔ t[β]([α]) = [α]⇒ i(t[β]([α]), [α]) = i([α], [α]) = 0

⇔ 0 = i(t[β]([α]), [α]) = i([α], [β])2 ⇒ i([α], [β]) = 0
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Figure 15. Proof of the Braid Relation

For the other direction it is clear that from i([α], [β]) = 0 it follows that t[β]([α]) =
[α]. �

Proposition 11 (Braid relation, [FM12,Bir74]). If [α] and [β] are isotopy
classes of simple closed curves in S such that i([α], [β]) = 1 then:

t[α] ◦ t[β] ◦ t[α] = t[β] ◦ t[α] ◦ t[β] (Braid relation)

Proof. Multiplying from the right by t−1[β] ◦ t
−1
[α] gives:

t[α] ◦ t[β] ◦ t[α] ◦ t−1[β] ◦ t
−1
[α] = t[β]

⇔ t[α] ◦ t[β] ◦ t[α] ◦ (t[α] ◦ t[β])−1 = t[β]
⇔ t(t[α]◦t[β])([α]) = t[β]

⇔ (t[α] ◦ t[β])([α]) = [β]

It su�ces to show this for one pair of curves with i([α], [β]) = 1 because of the
change of coordinates principle it then follows for all isotopy classes of curves with
i([α], [β]) = 1. The proof is done in Figure 15. The drawn torus is to be thought of
as eventually connected to a bigger surface as indicated by the dotted lines. There
is a view given in 3 dimensions and in 2-dimensional view from above. �
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CHAPTER 2

Linear Representations of Mapping Class Groups

Somebody said
that Reason was dead.
Reason said: No,
I think not so.

� Piet Hein

The main work of this chapter will be the proof of the following theorem:

Theorem 3 (Main Theorem (Korkmaz 2011 [Kor11])). Let S be a compact
connected oriented surface of genus g ≥ 1 with q ≥ 0 boundary components and let
n ≤ 2g − 1. Let φ : Mod(S)→ GL(n,C) be a homomorphism. Then

(1) Im(φ) ∼= {I} if g ≥ 3,
(2) Im(φ) ∼= Z10/N where N is a (normal) subgroup of Z10 if g = 2,
(3) Im(φ) ∼= Z12/N where N is a (normal) subgroup of Z12 if g = 1 and q = 0,
(4) Im(φ) ∼= Zq/N where N is a (normal) subgroup of Zq if g = 1 and q ≥ 1,

1. Linear Algebra and Algebra Preliminaries

1.1. Linear Algebra.

Lemma 2 ([Kor11], Lemma 2.1). Let C =

λ ∗ ∗
0 λ ∗
0 0 λ

 and D =

µ ∗ ∗
0 µ ∗
0 0 µ


be two elements of GL(3,C). Then

CDC = DCD ⇔ C = D

Proof. “⇐′′: clear.

“⇒′′: Let C =

λ a b
0 λ c
0 0 λ

 and D =

µ d e
0 µ f
0 0 µ

 Then

CDC =

 λ2µ aλµ+ λ(dλ+ aµ) bλµ+ c(dλ+ aµ) + λ(af + eλ+ bµ)
0 λ2µ cλµ+ λ(fλ+ cµ)
0 0 λ2µ


and

DCD =

 λµ2 dλµ+ (dλ+ aµ)µ eλµ+ (cd+ eλ+ bµ)µ+ f(dλ+ aµ)
0 λµ2 fλµ+ (fλ+ cµ)µ
0 0 λµ2


Comparing the top left entries gives (since λµ 6= 0)

λ2µ = λµ2 ⇒ λ = µ

continuing and using this result yields

aλµ+ λ(dλ+ aµ) = dλµ+ (dλ+ aµ)µ

⇔ aλ2 + λ(dλ+ aλ) = dλ2 + (dλ+ aλ)λ

17
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⇔ aλ2 = dλ2

⇔ a = d

and

cλµ+ λ(fλ+ cµ) = fλµ+ (fλ+ cµ)µ

⇔ cλ2 + λ(fλ+ cλ) = fλ2 + (fλ+ cλ)λ

⇔ c = f

and

bλµ+ c(dλ+ aµ) + λ(af + eλ+ bµ) = eλµ+ (cd+ eλ+ bµ)µ+ f(dλ+ aµ)

⇔ bλ2 + c(2aλ) + λ(ac+ eλ+ bλ) = eλ2 + (ca+ eλ+ bλ)λ+ c(2aλ)

⇔ b = e

�

Lemma 3. Let Let C =

λ 0 0
0 µ u
0 0 µ

 and D =

λ 0 0
0 µ v
0 0 µ


be two elements of GL(3,C). Then CD = DC.

Proof. A calculation shows: λ 0 0
0 µ u
0 0 µ

 .

 λ 0 0
0 µ v
0 0 µ

 =

 λ2 0 0
0 µ2 uµ+ vµ
0 0 µ2


and  λ 0 0

0 µ v
0 0 µ

 .

 λ 0 0
0 µ u
0 0 µ

 =

 λ2 0 0
0 µ2 uµ+ vµ
0 0 µ2


�

Remark 8. A scalar matrix λI commutes with every other matrix. Any two
matrices with entries only on the main diagonal commute with each other.

Lemma 4. Let C and D be two similar matrices in GL(n,C). Meaning, there
is an invertible matrix F in GL(n,C) such that D = F−1CF . Then C and D have
the same:

• Eigenvalues
• Determinant
• Trace
• Rank
• Characteristic polynomial

Furthermore, for every matrix E in there is a matrix J similar to E which is
in Jordan form.

Proof. The proof is only done for the characteristic polynomial, eigenvalues
and determinant. Let pC(x) and pD(x) be the respective characteristic polynomi-
als. Then pC(x) = det(xI − C), because of similarity there exists a F such that
D = F−1CF , therefore det(xI−C) = det(xI−FDF−1). Doing the trick I = FF−1

on the identity matrix gives det(xI − FDF−1) = det(FxIF−1 − FDF−1) =
det(F (xI −D)F−1) = det(F ) det(xI −D) det(F−1) = det(xI −D).[HJ85] It fol-
lows directly that C and D have the same eigenvalues. Because the determinant is
a multiplicative map it is straightforward that both matrices share the same deter-
minant. For the proof of the existence of the jordan form over complex numbers
see for example [HJ85] or [Koe97]. �
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Remark 9. Note that any two Dehn twists about isotopy classes of nonsepa-
rating simple closed curves are conjugate and therefore their representing matrices
similar.

Definition 16. Given a linear map L : V → V of a vector space V and a
subspace V ′ ⊆ V . If L(V ′) ⊆ V ′ then V ′ is called L-invariant.

1.2. Algebra.

Definition 17. A group G is called solvable i� it has a �nite subnormal series
whose factor groups are all abelian. Concretely it means that there are subgroups
1 = G0 / G1 / · · · / Gm−1 / Gm = G such that ∀i ∈ {1, . . . ,m} : Gi/Gi−1 is abelian.
Here Gi−1 / Gi means Gi−1 is normal in Gi. [Rot94]

Definition 18. For a group G let [G,G] denote the commutator subgroup
of G de�ned by: [G,G] =

〈
{xyx−1y−1 : x, y ∈ G}

〉
. [Lan02]

Lemma 5 ([Kor11], Lemma 2.2). The subgroup ∆GL(n,C) of GL(n,C) con-
sisting of upper triangular matrices is solvable.

Proof. Let G0 := ∆GL(n,C) and Gi := [Gi−1, Gi−1]. Because the commuta-
tor subgroups are normal it is su�cient to show that there is a Gj = I, the resulting
quotients are obviously abelian (abelianised) by factoring with the commutator sub-
group. Let C = (cij) be an element of ∆GL(n,C). Because det(C) 6= 0, C does not
have any 0 entries on the main diagonal. Let E := C−1 then for the main diagonal
entries it follows that: eii = c−1ii . So for any two elements C and D of ∆GL(n,C),
the main diagonal entries of CDC−1D−1 must be all 1. So any element of G1 has
the form 

1 ∗ · · · ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 · · · 0 1


For any two elements C and D of G1 we �nd

1 ∗ ∗ · · · ∗

0 1
...

0 0
. . . ai−1,i ∗

...
. . . 1 ∗

0 · · · 0 0 1





1 ∗ ∗ · · · ∗

0 1
...

0 0
. . . bi−1,i ∗

...
. . . 1 ∗

0 · · · 0 0 1


=



1 ∗ ∗ · · · ∗

0 1
...

0 0
. . . ai−1,i + bi−1,i ∗

...
. . . 1 ∗

0 · · · 0 0 1


for the entries above the main diagonal. So (CDC−1D−1)i−1,i = ci−1,i + di−1,i −
ci−1,i − di−1,i. Therefore every element from G2 must look like:

1 0 ∗ · · · ∗

0 1 0
. . .

...

0 0
. . .

. . . ∗
...

. . . 1 0
0 · · · 0 0 1


Repeating this procedure will move zeros up by one diagonal in each step. So
Gn = {I}. �

Definition 19. A group G is called perfect if it is equal to its commutator
subgroup (G = [G,G]).[Ros94]
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Lemma 6 ([Kor11], Lemma 2.3). Any homomorphism from a perfect group G
to an abelian group H is trivial.

Proof. Let φ : G → H be any homomorphism from a perfect group to an
abelian group. Because H is abelian we have for any two elements g1 and g2 of G
that

φ(g1)φ(g2) = φ(g2)φ(g1)⇒ φ(g1g2) = φ(g2g1)⇒ φ(g1g2)φ(g2g1)−1 = I

⇒ φ(g1g2g
−1
1 g−12 ) = I

But every element of G is a product of commutators. �

Lemma 7 ([FH11], Lemma 2.2). If G is a perfect group and H is a solvable
group. Then any homomorphism G→ H is trivial.

Proof. Let φ : G → H be any homomorphism. Because H is solvable we
have a subnormal series with abelian factor groups: {I} = H0 /H1 / · · · /Hm = H.
Let f : H → H/Hm−1 be the canonical map. H/Hm−1 is abelian, so f ◦ φ is
trivial. Therefore φ(G) ⊆ Hm−1. Continuing with Hm−1 → Hm−1/Hm−2 we
get φ(G) ⊆ Hm−2. By induction and because we know that H0 = {I} we get
φ(G) ⊆ H0 = {I}. �

Definition 20. For a group G and a vector space V over a �eld K, with
n = dim(V ). A homomorphism φ : G→ GL(V ) is called a representation of G
on V .[JL93][GW99]

2. Mapping Class Group Preliminaries

Remark 10. Note that in this chapter, S will mean an oriented surface with
p ≥ 0 punctures (marked points) and q ≥ 0 boundary components, unless otherwise
indicated. Furthermore Mod(S) is supposed to mean PMod(S) if the surface has
marked points.

Notation 4. For any two F and G in Mod(S), G ◦ F will be written as GF .
For any isotopy class of closed simple curves [α], latin letters will denote the class
a = [α] and greek letters will denote a representing curve α ∈ a. If there is no
danger of confusion a might sometimes be used to denote either a representing
curve or the isotopy class depending on the context.

Theorem 4 ([KM00], Theorem 1.2). Let S be a surface of genus g ≥ 1 and
α and β two nonseparating simple closed curves on S. Then there is a sequence
α = α0, . . . , αk = β of nonseparating simple closed curves in S such that:

∀i ∈ {0, . . . , k − 1} : i(αi, αi+1) = 1

Theorem 5 ([KM00], Theorem 2.7). Let S be a surface of genus g ≥ 2 and
α and β be two nonseparating simple closed curves in S intersecting at exactly one
point. Then the commutator subgroup of PMod(S) is generated normally by tαt

−1
β

Proof. For a proof see Theorems 2.6, 2.7 and 2.8 in [KM00]. Note that there
it says that the commutator subgroup of PMod(S) is generated by the collection
of all such elements (of the form tαt

−1
β ). But now let α′ and β′ be any other

pair of nonseparating simple closed curves on S intersecting once. Then there
is an orientation preserving homeomorphism f : S −→ S with f(α) = α′ and
f(β) = β′ and so: ftαf

−1ft−1β f−1 = ftαt
−1
β f−1 = tα′t

−1
β′ . Therefore only one

tαt
−1
β is su�cient to normally generate the commutator subgroup:〈

tαt
−1
β

〉G
=
〈
{gtαt−1β g−1 : g ∈ PMod(S)}

〉
�
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Corollary 4 ([Kor11]). If N / PMod(S) is a normal subgroup of PMod(S)
with tat

−1
b ∈ N then:

[PMod(S),PMod(S)] ⊆ N

Theorem 6 ([Pow78], Theorem 1). For a surface S of genus g ≥ 3, the
mapping class group of S is perfect (e.g. PMod(S) = [PMod(S),PMod(S)]).

Theorem 7 ([KM00], Theorem 4.2). For a surface S of genus g ≥ 2, the
commutator subgroup of PMod(S) is perfect:

[PMod(S),PMod(S)] = [[PMod(S),PMod(S)], [PMod(S),PMod(S)]]

.

Proof of Theorem 7. By theorem 5 G′ := [PMod(S),PMod(S)] is gener-
ated normally by any element of the form tαt

−1
β where α and β are two nonseparat-

ing simple closed curves in S intersecting at exactly one point. Because the genus
is at least 2, one can �nd a third nonseparating simple closed curve γ disjoint from
α and β. Choose an element of G′ as follows:

[f, g] ∈ G′ : [f, g] = fgf−1g−1

Because of Corollary 3 any two nonseparating simple closed curves are conjugate. So
setting g = tβ and f(β) = γ gives ftβf

−1t−1β = tγt
−1
β ∈ G′ and setting g = tα and

f(α) = γ gives ftαf
−1t−1α = tγt

−1
α ∈ G′. Building the commutator of those two ele-

ments one gets that [tγt
−1
β , tγt

−1
α ] ∈ [G′, G′]. [tγt

−1
β , tγt

−1
α ] = tγt

−1
β tγt

−1
α tβt

−1
γ tαt

−1
γ

because γ is disjoint from α and β it commutes with both of them (Proposition
10). So we get:

tγt
−1
β tγt

−1
α tβt

−1
γ tαt

−1
γ = t−1β t−1α tβtα

Extending from the right side with 1 = tβt
−1
β gives:

t−1β t−1α tβtα = t−1β t−1α tβtαtβt
−1
β

here we can use the braid relation (tβtαtβ = tαtβtα) between α and β because they
intersect exactly once, this gives:

t−1β t−1α tβtαtβt
−1
β = t−1β t−1α tαtβtαt

−1
β = tαt

−1
β

but because G′ is generated normally by those elements it follows that G′ ⊆ [G′, G′]
and so G′ is perfect. �

Theorem 8 ([Kor02], Theorem 5.1). Let S be a surface of genus g ≥ 1 with
q ≥ 0 boundary components and G := PMod(S) and G′ := G/[G,G]. Then:

(1) G′ ∼= {1}, if g ≥ 3,
(2) G′ ∼= Z10, if g = 2,
(3) G′ ∼= Z12, if g = 1 and q = 0,
(4) G′ ∼= Zq, if g = 1 and q ≥ 1,

Lemma 8. Let S be a surface, G := PMod(S) and Gab := G/[G,G]. Let a
and b be isotopy classes of nonseparating simple closed curves in S. Let φ : G →
Gab, x 7→ [x] be the canonical homomorphism. Then:

φ(ta) = φ(tb)

Proof. Because Dehn twists about nonseparating simple closed curves in S
are conjugate it follows:

φ(tb) = φ(f ◦ ta ◦ f−1) = φ(ta)

�
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Lemma 9 ([Kor11], Lemma 3.7). Let S be a surface of genus g ≥ 1 and let
a and b be isotopy classes of nonseparating simple closed curves on S. If H is an
abelian group and φ : PMod(S)→ H a homomorphism, then:

φ(ta) = φ(tb)

Proof. Because Dehn twists about nonseparating simple closed curves in S
are conjugate it follows:

φ(tb) = φ(f ◦ ta ◦ f−1) = φ(ta)

�

3. Homomorphisms from the Mapping Class Group to GL(n,C)

3.1. Preparations for the proof of the Main Theorem. This section
is devoted to the proof of the Main Theorem (Theorem 3). Throughout the
following text S is an oriented surface of genus g ≥ 1 and n ≤ 2g − 1 and
φ : PMod(S)→ GL(n,C) is a homomorphism. This proof is taken from the Paper
of Korkmaz[Kor11] who based his proof on a proof by Franks and Handel[FH11].
Most proofs closely follow the text of Korkmaz[Kor11] sometimes extending and
explaining it if considered necessary.

Notation 5. In the following text V := Cn will be a vector space.

Definition 21. Let a be an isotopy class of simple closed curves on S. Then
the representative of the dehn twist about a in GL(n,C) is denoted by La := φ(ta).
If λ is an eigenvalue of a linear operator L the corresponding eigenspace is denoted
by Eλ(L) := {~v ∈ V : L~v = λ~v}. And Eaλ := Eλ(La).

Lemma 10. Given two linear operations La and Lb, if they commute then they
preserve each others eigenspaces. In particular if a and b are two nonseparating
simple closed curves disjoint from each other, then their linear representatives com-
mute and preserve each others eigenspaces.

Proof. Let λ be an eigenvalue of La. Assume Eaλ is not Lb invariant, then
∃~x ∈ Eaλ : (Lb~x) /∈ Eaλ, so:

(Iλ)(Lb~x) 6= LaLb~x = LbLa~x = Lb(Iλ)~x = (Iλ)Lb~x

a contradiction. �

Remark 11. Generalised eigenspaces nEaλ := Kern((La − λI)n) of a linear
operator La are preserved by a commuting operator. Proof: (La−λI)nLb = Lb(La−
λI)n.

Proposition 12 ([Kor11], Proposition 4.1). Let g = 2 and n ≤ 2. Then
φ(PMod(S)) = im(φ) is a quotient of the cyclic group Z10.

Proof. n = 1: Then GL(1,C) ∼= C∗. This group is abelian. Then by
the universal property of the abelianisation (See Proof of Lemma 9 for an

example), φ can be written as: φ : PMod(S) → C∗ = φ : PMod(S)
ϕ→

PMod(S)/[PMod(S),PMod(S)]→ C∗. By Theorem 8:

PMod(S)/[PMod(S),PMod(S)] = Z10

So φ : PMod(S)
ϕ→ Z10 → C∗. By the Isomorphism Theorem:

Im(φ) ∼= PMod(S)/Kern(φ) ∼= Z10/(Kern(φ)/[PMod(S),PMod(S)])
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Figure 1. Intersection of curves for Proposition 12

Figure 2. Example of how the intersection of curves for Proposi-
tion 12 could look like in a genus 2 surface.

n = 2: LetG := PMod(S) andG′ := [PMod(S),PMod(S)] andGab = G/G′.
Let a, b and c be isotopy classes of nonseparating simple closed curves in
S, such that a is disjoint from b∪c and such that b intersects c transversely
at one point. Because g = 2, those curves clearly exist, that is i(b, c) =
1, i(a, b) = 0 and i(a, c) = 0 as shown in �gure 1 and 2. It su�ces
to proof that φ(G′) = {I}, because then G′ ⊆ Kern(φ) and Im(φ) ∼=
G/Kern(φ) ∼= Gab/(Kern(φ)/G′). Let La be in jordan form, then there
are three possibilities (with respect to an adequate basis) for La:

(
λ 0
0 µ

)
,(

λ 0
0 λ

)
and

(
λ 1
0 λ

)
. Those cases are analysed separately:

(1) If La has two distinct eigenvalues λ 6= µ then choose as a basis
(~v1, ~v2) : ~v1 ∈ Eaλ, ~v2 ∈ Eaµ. La is diagonal, because neither b nor
c intersects a, Lb and Lc commute with La. So the eigenspaces Eaλ
and Eaµ must be Lb-invariant and Lc-invariant. So Lb and Lc must be
diagonal too and La, Lb and Lc commute. From the braid relation it
follows LbLcLb = LcLbLc ⇒ Lb = Lc ⇒ LbL

−1
c = I ⇒ φ(tbt

−1
c ) = I.

BecauseG′ is generated normally by tbt
−1
c it follows that φ(G′) = {I}.

(2) If La only has one eigenvalue λ and the jordan form of La = λI,
then La commutes with every other linear representative Lx. Let
x be any isotopy class of nonseparating simple closed curves on S.
Because a and x are conjugate, La and Lx must be conjugate too.
So Lx = FLaF

−1 = FλIF−1 = λIFF−1 = λI. According to the
theorem of Dehn-Lickorish the Mapping Class Group is generated
by (�nitely many) Dehn twists about nonseparating simple closed
curves. So G = PMod(S) = 〈ta〉 ⇒ φ(G) = φ(〈ta〉) = 〈φ(ta)〉 = 〈La〉
and therefore the image of φ is cyclic. ⇒ φ factors via G′.

(3) If La is of the form
(
λ 1
0 λ

)
in some adequate basis, then the eigenspace

Eaλ = span{(1, 0)} is 1-dimensional. So Lb =
(
λ ∗
0 λ

)
and Lc =

(
λ ∗
0 λ

)
because they must preserve Eaλ and because they are conjugate to La
they have the same eigenvalues. LbLc = LcLb because

(
λ a
0 λ

)(
λ b
0 λ

)
=(

λ2 (a+b)λ

0 λ2

)
. From the braid relation it follows LbLcLb = LcLbLc ⇒
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Lb = Lc ⇒ LbL
−1
c = I ⇒ φ(tbt

−1
c ) = I. So φ(G′) = {I} like in the

case with two eigenvalues.
�

Lemma 11. Let F ∈ PMod(S) and Lx the representative of a Dehn twist along
a nonseparating simple closed curve and λ an eigenvalue of Lx. Then:

Eλ(FLxF
−1) = F (Eλ(Lx)) = F (Exλ) (3.1)

Proof.

F (Exλ) = F ({~v ∈ V : λ~v = Lx~v})
= {F~v ∈ V : λ~v = Lx~v}
= {~v ∈ V : λF−1~v = LxF

−1~v}
= {~v ∈ V : FλF−1~v = FLxF

−1~v}
= {~v ∈ V : λ~v = FLxF

−1~v}
= Eλ(FLxF

−1)

�

Lemma 12 ([Kor11], Lemma 4.2). Let a, b, x and y be four isotopy classes of
nonseparating simple closed curves on S, such that there is an orientation preserving
homeomorphism1 f : S → S with f(x) = a and f(y) = b. Let λ be an eigenvalue of
La. Then:

Eaλ = Ebλ ⇔ Exλ = Eyλ

Proof. Because of Lemma 1 on Page 13: ftxf
−1 = ta and ftyf

−1 = tb, so
for the representatives we get FLxF

−1 = La and FLyF
−1 = Lb. Furthermore:

Eaλ = Eλ(La) = Eλ(FLxF
−1)

Ebλ = Eλ(Lb) = Eλ(FLyF
−1)

Then by equation (3.1):

Eλ(FLxF
−1) = F (Exλ)

Eλ(FLyF
−1) = F (Eyλ)

So we have: Eaλ = F (Exλ), Ebλ = F (Eyλ), Exλ = F−1(Eaλ) and Eyλ = F−1(Ebλ). And

Eaλ = Ebλ ⇔ Exλ = Eyλ

�

Remark 12. A 3× 3 matrix has 6 possible di�erent Jordan forms. 2

Notation 6. span{(1, 0, 0)} := {(z, 0, 0) : z ∈ C}. More formally:

span{~v1, . . . , ~vk} := {z1 ~v1 + . . .+ zk ~vk : z1, . . . , zk ∈ C}

Proposition 13 ([Kor11], Proposition 4.3). Let S be a surface of genus g = 2
and let φ : PMod(S)→ GL(3,C) be a homomorphism. Then

Im(φ) ∼= Z10/N

where N / Z10 is a normal subgroup.

1The paper [Kor11] says orientation-preserving di�eomorphism. But there is an isomorphism
π0(Homeo+(S, ∂S)) ∼= π0(Diff+(S, ∂S)).

2See The On-Line Encyclopedia of Integer Sequences [Slo]. Sequence Number A000219:
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, . . .
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Proof. Let G := PMod(S) and let G′ := [PMod(S),PMod(S)]. Note that
Gab := G/G′ ∼= Z10. So it su�ces to show that Im(φ) is abelian, because of the
universal property of the abelianisation, any homomorphism from G to an abelian
group must factor through Gab, so the image must be a quotient of Z10. Or equiv-
alently it is su�cient to show that φ(G′) = {I} because then G′ ⊆ Kern(φ) and
Im(φ) ∼= G/Kern(φ) ∼= Gab/(Kern(φ)/G′). Let a be an isotopy class of nonseparat-
ing simple closed curves on S. Then there are six possible di�erent Jordan forms
for La:

(1)

λ 0 0
0 λ 0
0 0 λ


(2)

λ 0 0
0 µ 0
0 0 ν


(3)

λ 1 0
0 λ 1
0 0 λ


(4)

λ 0 0
0 µ 1
0 0 µ


(5)

λ 0 0
0 λ 1
0 0 λ


(6)

λ 0 0
0 λ 0
0 0 µ


Where λ 6= µ, µ 6= ν and λ 6= ν. Each case should be analysed separately.

(1) La =
( λ 0 0
0 λ 0
0 0 λ

)
: Let x be an isotopy class of nonseparating simple closed

curves on S. All nonseparating simple closed curves on S are conjugate, so
Lx = FλIF−1 = λI. Because x was free to choose, every dehn twist about
a nonseparating simple closed curve on S is represented by λI. Because
PMod(S) is generated by such dehn twists, it follows that φ(G) = 〈λI〉 is
cyclic.

(2) La =
( λ 0 0
0 µ 0
0 0 ν

)
: We have Eaλ = Kern(La − λI) = span{(1, 0, 0)}. And

analogously for the two other eigenvalues. So take two isotopy classes of
nonseparating closed curves b and c intersecting at one point such that b∪c
is disjoint from a. Lb and Lc must leave each eigenspace of La invariant. So

they must be both diagonal
( ∗ 0 0
0 ∗ 0
0 0 ∗

)
and so Lb and Lc commute. Because

they intersect once the braid relation is valid and so: LbLcLb = LcLbLc ⇒
Lb = Lc. From this it follows like before in the proof for 2 × 2 matrices,

that φ(Lb) = φ(Lc) ⇒ φ(LbL
−1
c ) = I and because G′ =

〈
tbt
−1
c

〉G ⇒
φ(G′) = {I}.

(3) La =
( λ 1 0
0 λ 1
0 0 λ

)
: We have Eaλ = Kern(La − λI) = span{(1, 0, 0)}. Let b

and c be two isotopy classes of nonseparating simple closed curves in S
like in the case (2) above, such that b and c intersect once, and both are
disjoint from a. Lb and Lc must preserve Eaλ, so must be of the form( ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
. Because generalised eigenspaces must be preserved too if follows

Kern((La − λI)2) = span{(1, 0, 0), (0, 1, 0)} must be preserved and so Lb
and Lc must be of the form

( ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)
. Because they are also conjugate to
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La they must have the same eigenvalues and so are of the form:λ ∗ ∗
0 λ ∗
0 0 λ


Because of Lemma 2 and from the braid relation we get LbLcLb = LcLbLc ⇒
Lb = Lc ⇒ φ(G′) = {I}.

(4) La =
( λ 0 0
0 µ 1
0 0 µ

)
: For the eigenspaces we get Eaλ = span{(1, 0, 0)} and Eaµ =

span{(0, 1, 0)}. Let b and c again be two isotopy classes of nonseparating
simple closed curves on S such that b and c intersect once, and they both
are disjoint from a. The eigenspaces of La must be preserved by Lb and
Lc so:

Lb, Lc =

∗ 0 ∗
0 ∗ ∗
0 0 ∗


Because of the braid relation: b11 0 b13

0 b22 b23
0 0 b33

 .

 c11 0 c13
0 c22 c23
0 0 c33

 .

 b11 0 b13
0 b22 b23
0 0 b33


=

 b211c11 0 b11b13c11 + b33 (b11c13 + b13c33)
0 b222c22 b22b23c22 + b33 (b22c23 + b23c33)
0 0 b233c33


and c11 0 c13

0 c22 c23
0 0 c33

 .

 b11 0 b13
0 b22 b23
0 0 b33

 .

 c11 0 c13
0 c22 c23
0 0 c33


=

 b11c
2
11 0 b11c11c13 + (b13c11 + b33c13) c33

0 b22c
2
22 b22c22c23 + (b23c22 + b33c23) c33

0 0 b33c
2
33


must be equal. So: b11 = c11, b22 = c22 and b33 = c33. Then from
LaLb = LbLa and LaLc = LcLa we get: b11 0 b13

0 b22 b23
0 0 b33

 .

 λ 0 0
0 µ 1
0 0 µ

 =

 λb11 0 µb13
0 µb22 b22 + µb23
0 0 µb33


and λ 0 0
0 µ 1
0 0 µ

 .

 b11 0 b13
0 b22 b23
0 0 b33

 =

 λb11 0 λb13
0 µb22 µb23 + b33
0 0 µb33


So b22 = b33 = c22 = c33 and b13 = c13 = 0. Because La, Lb and Lc must
have the same eigenvalues it follows that:

Lb, Lc =

 λ 0 0
0 µ ∗
0 0 µ


But matrices of this form commute. So again from the braid relation
LbLcLb = LcLbLc ⇒ Lb = Lc and like in the cases before φ(G′) = {I}.

(5) La =
( λ 0 0
0 λ 1
0 0 λ

)
: For the eigenspace we get Eaλ = span{(1, 0, 0), (0, 1, 0)}.

Let b be the isotopy class of nonseparating closed simple curves on S such
that b intersects a in one point (i(a, b) = 1). There are two cases to check.
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Figure 3. Intersection of curves for Proposition 13 Part (5a)

Figure 4. Example of how the intersection of curves for Proposi-
tion 13 Part (5a) could look like in a genus 2 surface.

(a) Eaλ 6= Ebλ: Let c and d be two isotopy classes of nonseparating sim-
ple closed curves on S such that c intersects d at one point and c
and d are disjoint from both a and b. See Figure 3 and Figure 4 as
example. Then Eaλ ∩ Ebλ is of dimension 1 and Eaλ is of dimension 2.
Both must be invariant under Lc and Ld and Lc and Ld must have
the same eigenvalues with multiplicities as La and so Lc and Ld must
be of the form:

Lc, Ld =

 λ ∗ ∗
0 λ ∗
0 0 λ


Again from Lemma 2 and from the braid relation we get LcLdLc =
LdLcLd ⇒ Lc = Ld ⇒ φ(G′) = {I}.

(b) Eaλ = Ebλ: Let b
′ be any isotopy class of nonseparating simple closed

curves on S intersecting a in one point. Then from Lemma 12
we get that Eb = E′b. Now let c be any isotopy class of simple
closed nonseparating curves on S. Then by Theorem 4 there exists
a sequence of isotopy classes of nonseparating simple closed curves
a = a0, a1, . . . , ak = c such that i(ai, ai−1∀i ∈ {1, . . . , k} and there-
fore Eaλ = Ea0λ = Ea1λ = . . . = Eakλ = Ecλ because G = PMod(S) is
generated by dehn twists about isotopy classes of nonseparating sim-
ple closed curves on S, Ea must be invariant under L ∈ φ(G) because
L can be written as L = Lb0Lb1 . . . Lbm for some isotopy classes of
nonseparating simple closed curves in S b0, . . . , bm. So there must be
a homomorphism φ̄→ GL(Eaλ) = GL(2,C). Think of this as:

G
φ→ GL(3,C)

( a b ∗
d e ∗
∗ ∗ ∗

)
7→
(
a b
c d

)
→ GL(2,C)

With Proposition 12 it follows that φ̄(G) is cyclic and so for any
element of the commutator subgroup f ∈ G′ : φ̄(f) = I, therefore
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Figure 5. Example of how the intersection of curves for Proposi-
tion 13 Part (6a) could look like in a genus 2 surface.

the matrix of φ(f) must have the form:

φ(f) =

 1 0 ∗
0 1 ∗
0 0 ∗


φ(G′) consists only of upper triangular matrices, and so by Lemma 5
is solvable. The groupG′ is perfect by Theorem 7 and so by Lemma 7,
any homomorphism G′ −→ φ(G′) is trivial.

(6) La =
( λ 0 0
0 λ 0
0 0 µ

)
: For the λ-eigenspace of La we get E

a
λ = span{(1, 0, 0), (0, 1, 0)}.

Let b be the isotopy class of nonseparating closed simple curves on S such
that b intersects a in one point (i(a, b) = 1). Again there are two cases to
check:
(a) Eaλ 6= Ebλ: By Lemma 12 it follows that for any isotopy classes x

and y of nonseparating simple closed curves in S intersecting at one
point (i(x, y) = 1): Exλ 6= Eyλ. So let c, d and e be isotopy classes of
nonseparating simple closed curves on S. Such that i(b, a) = i(a, c) =
i(c, d) = i(d, e) = 1 and they are otherwise disjoint. See Figure 5 for
an example. Let (~v1, ~v2, ~v3) : ~v1 ∈ Eaλ ∩ Ebλ, ~v2 ∈ Eaλ, ~v3 ∈ Eaµ so that

it is a basis. Eaλ ∩ Ebλ, Eaλ and Eaµ must be Ld and Le invariant. So:

Ld, Le =

 ∗ ∗ 0
0 ∗ 0
0 0 ∗


From the Braid relation LdLeLd = LeLdLe it follows: d11 d12 0
0 d22 0
0 0 d33

 .

 e11 e12 0
0 e22 0
0 0 e33

 .

 d11 d12 0
0 d22 0
0 0 d33


=

 d211e11 d11d12e11 + d22 (d11e12 + d12e22) 0
0 d222e22 0
0 0 d233e33


and e11 e12 0
0 e22 0
0 0 e33

 .

 d11 d12 0
0 d22 0
0 0 d33

 .

 e11 e12 0
0 e22 0
0 0 e33


=

 d11e
2
11 d11e11e12 + (d12e11 + d22e12) e22 0

0 d22e
2
22 0

0 0 d33e
2
33


So d11 = e11, d2 = e22 and d33 = e33. Because Ld and Le must have
the same eigenvalues as La, the following three forms are possible:( λ ∗ 0
0 λ 0
0 0 µ

)
,
( µ ∗ 0
0 λ 0
0 0 λ

)
and

( λ ∗ 0
0 µ 0
0 0 λ

)
:
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(i) Ld, Le =
( λ ∗ 0
0 λ 0
0 0 µ

)
: But in this case λ d12 0

0 λ 0
0 0 µ

 .

 λ e12 0
0 λ 0
0 0 µ

 =

 λ e12 0
0 λ 0
0 0 µ

 .

 λ d12 0
0 λ 0
0 0 µ



=

 λ2 λd12 + λe12 0
0 λ2 0
0 0 µ2


So Ld and Le commute, and now again from the braid relation
LdLeLd = LeLdLe we get Ld = Le and φ(G′) = {I}.

(ii) Ld, Le =
( µ ∗ 0
0 λ 0
0 0 λ

)
or Ld, Le =

( λ ∗ 0
0 µ 0
0 0 λ

)
: If Ld, Le =

( λ ∗ 0
0 µ 0
0 0 λ

)
then Edλ = Eeλ a contradiction. If Ld, Le =

( µ ∗ 0
0 λ 0
0 0 λ

)
then must

Eeµ = span{(1, 0, 0)} be Lc invariant, and so:

Lc =

 c11 ∗ ∗
0 ∗ ∗
0 ∗ ∗


From the braid relation LaLcLa = LcLaLc we get: λ 0 0

0 λ 0
0 0 µ

 .

 c11 c12 c13
0 c22 c23
0 c32 c33

 .

 λ 0 0
0 λ 0
0 0 µ



=

 λ2c11 λ2c12 λµc13
0 λ2c22 λµc23
0 λµc32 µ2c33


=

 c11 c12 c13
0 c22 c23
0 c32 c33

 .

 λ 0 0
0 λ 0
0 0 µ

 .

 c11 c12 c13
0 c22 c23
0 c32 c33


=

 λc211 λc11c12 + λc22c12 + µc13c32 λc11c13 + µc33c13 + λc12c23
0 λc222 + µc23c32 λc22c23 + µc33c23
0 λc22c32 + µc33c32 µc233 + λc23c32


And therefore c11 = λ. From the Braid relation LcLdLc =
LdLcLd we get: λ c12 c13

0 c22 c23
0 c32 c33

 .

 µ d12 0
0 λ 0
0 0 λ

 .

 λ c12 c13
0 c22 c23
0 c32 c33



=

 λ2µ λµc12 + λc13c32 + c22 (λc12 + λd12) λµc13 + λc33c13 + c23 (λc12 + λd12)
0 λc222 + λc23c32 λc22c23 + λc33c23
0 λc22c32 + λc33c32 λc233 + λc23c32


=

 µ d12 0
0 λ 0
0 0 λ

 .

 λ c12 c13
0 c22 c23
0 c32 c33

 .

 µ d12 0
0 λ 0
0 0 λ


=

 λµ2 λµd12 + λ (µc12 + c22d12) λ (µc13 + c23d12)
0 λ2c22 λ2c23
0 λ2c32 λ2c33


But then λ = µ a contradiction.
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Figure 6. Explanation of surfaces for Lemma 13

Figure 7. Example how a torus can be cut out so that the rest
surface has one boundary component.

(b) Eaλ = Ebλ: Let b
′ be any isotopy class of nonseparating simple closed

curves on S intersecting a in one point. Then from Lemma 12
we get that Eb = E′b. Now let c be any isotopy class of simple
closed nonseparating curves on S. Then by Theorem 4 there exists
a sequence of isotopy classes of nonseparating simple closed curves
a = a0, a1, . . . , ak = c such that i(ai, ai−1∀i ∈ {1, . . . , k} and there-
fore Eaλ = Ea0λ = Ea1λ = . . . = Eakλ = Ecλ because G = PMod(S) is
generated by dehn twists about isotopy classes of nonseparating sim-
ple closed curves on S, Ea must be invariant under L ∈ φ(G) because
L can be written as L = Lb0Lb1 . . . Lbm for some isotopy classes of
nonseparating simple closed curves in S b0, . . . , bm. So there must be
a homomorphism φ̄→ GL(Eaλ) = GL(2,C). Think of this as:

G
φ→ GL(3,C)

( a b ∗
d e ∗
∗ ∗ ∗

)
7→
(
a b
c d

)
→ GL(2,C)

With Proposition 12 it follows that φ̄(G) is cyclic. And so for any
element of the commutator subgroup f ∈ G′ : φ̄(f) = I, so the matrix
of φ(f) must have the form:

φ(f) =

 1 0 ∗
0 1 ∗
0 0 ∗


So φ(G′) consists only of upper triangular matrices, and so by Lemma 5
is solvable. The group G′ is perfect by Theorem 7. And so by
Lemma 7, any homomorphism G′ −→ φ(G′) is trivial.

�

Lemma 13 ([Kor11]). Let S be a surface of genus g ≥ 3 and let n ≤ 2g − 1.
Let R be a subsurface of S homeomorphic to a compact connected surface of genus
g − 1 with one boundary component. Imagine this as the rest of the surface S that
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is remaining after cutting away one torus. See Figures 6 and 7. The embedding of
R in S induces an embedding of PMod(R) in PMod(S):

f 7→ f ′(x) =

{
f(x) if x ∈ R
x if x ∈ S −R

Let G := PMod(S), GR := PMod(R), G′R := [PMod(R),PMod(R)] and Gab
H :=

GR/G
′
R. If there exists a φ(GR) invariant subspace V ⊆ Cn of dimension r :=

dim(V ) such that 2 ≤ r ≤ n− 2. Then φ induces two homomorphisms:

• φ1 : GR → GL(V ) ∼= GL(r,C) and
• φ2 : GR → GL(Cn/V ) ∼= GL(n− r,C)

If φ1(GR) and φ2(GR) both are cyclic then φ(G) is trivial.

Proof. Let a and b be two isotopy classes of nonseparating simple closed
curves on R, with i(a, b) = 1. φ1(GR) and φ2(GR) are both cyclic, so they are also
abelian. So with Lemma 9 it follows that φ1(ta) = φ1(tb) ⇒ φ1(tat

−1
b ) = I and

φ2(ta) = φ2(tb) ⇒ φ2(tat
−1
b ) = I. G′R is generated normally by elements of the

form tat
−1
b . So

φ1(G′R) = φ1(
〈
tat
−1
b

〉G′R) =
〈
{φ1(g)φ1(tat

−1
b )φ1(g−1) : g ∈ G′R}

〉
= 〈I〉 = I

and

φ2(G′R) = φ2(
〈
tat
−1
b

〉G′R) =
〈
{φ2(g)φ2(tat

−1
b )φ2(g−1) : g ∈ G′R}

〉
= 〈I〉 = I

Thus for all f ∈ G′R there is some basis of C such that φ(f) has the form:

φ1(G
′
R)=Ir︷ ︸︸ ︷

φ(f) =



1 ∗ · · · ∗

1
...

. . .
...

. . .

1 ∗ · · · ∗
1

1
. . .

1


=

(
In F
0 In−r

)

︸ ︷︷ ︸
φ(G′R)V⊆V

︸ ︷︷ ︸
φ2(G′R)=In−r

In the matrix it is indicated with braces where the various entries come from.
The subgroup of matrices of this form is abelian. Therefore it is also solvable,
and because G′R is perfect it follows from Lemma 7 that φ(G′R) is trivial, and so
φ(ab−1) = I. Because of Theorem 6 by Powell [Pow78] the mapping class group
for g ≥ 3 is perfect, so G = G′ but since this group is generated normally by tat

−1
b

it follows that

φ(G) = φ(
〈
tat
−1
b

〉G
) = φ(

〈
{ftat−1b f−1 : f ∈ G}

〉
) =

〈
φ({ftat−1b f−1 : f ∈ G})

〉
=
〈
{Fφ(tat

−1
b )F−1 : F ∈ φ(G)}

〉
=
〈
{FIF−1 : F ∈ φ(G)}

〉
= I

. �

This concludes the preparations for proo�ng the main theorem.
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3.2. Proof of the Main Theorem.

Proof of Theorem 3, [Kor11]. Remember that the conditions for the the-
orem were: g ≥ 1 and n ≤ 2g − 1.

g = 1 and n = 1: In this case we have a map φ : PMod(S) −→ GL(1,C)
But this is the same as φ : PMod(T 2) ∼= SL(2,Z) −→ GL(1,C) ∼= C∗. C∗
is abelian, so by the universal property of the abelianisation any homo-
morphism must factor through the abelianized group:

PMod(S)

��

// C∗

PMod(S)ab

::

From Theorem 8 it follows that φ(G) = Z12/N if q = 0 and φ(G) = Zq/N
if q ≥ 1 where N / Z12 respectively N / Zq is a normal subgroup.

g = 2 and n ≤ 3: This has been proved in Proposition 12 and Proposition 13.
g ≥ 3: Proof by induction. Assume the Theorem holds for all surfaces with

genus g− 1. There is an isomorphism from GL(k− 1,C) to a subgroup of
GL(k,C). e.g. given by:


a11 a12 . . . a1(k−1)
a21 a22 . . . a2(k−1)
...

...
a(k−1)1 a(k−1)2 . . . a(k−1)(k−1)

 7−→


a11 a12 . . . a1(k−1) 0
a21 a22 . . . a2(k−1) 0
...

... 0
a(k−1)1 a(k−1)2 . . . a(k−1)(k−1) 0

0 0 . . . 0 1


So it is su�cient to proof the theorem for n = 2g − 1.

Let R be a subsurface of S homeomorphic to a compact connected
surface of genus g − 1 with one boundary component. Imagine this as
the rest of the surface S that is remaining after cutting away one torus.
See Figures 6 and 7. The embedding of R in S induces an embedding of
PMod(R) in PMod(S):

f 7→ f ′(x) =

{
f(x) if x ∈ R
x if x ∈ S −R

Then set G := PMod(S), GR := PMod(R), G′R := [PMod(R),PMod(R)]
and Gab

H := GR/G
′
R. Let a and b be two isotopy classes of nonseparating

simple closed curves on S with i(a, b) = 1 such that a∪b is disjoint from R.
If there is a subspace V ⊆ Cn of dimension r with 2 ≤ r ≤ n−2 which is a
direct sum of eigenspaces of La then V is φ(GR) invariant. And therefore
by Lemma 13 and by the assumption that the theorem holds (meaning
the image of any GR −→ GL(n,C) is cyclic) for all surfaces of genus g− 1
it follows that φ(G) = I. There exists such a subspace if La has at least
three distinct eigenvalues: Note, that dim(Eaλ) ≥ 1 for each eigenspace
and therefore if La has at least three distinct eigenvalues dim(Eaλ) ≤ n−2
for each eigenspace and dim(V ) ≥ 2.

If on the other hand, there is no such subspace V . Then La has at
most two eigenvalues and each eigenspace of La is either 1-, (n− 1)- or n-
dimensional. Thus, the jordan form of La must have one of the following
forms:
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(1)

λIn =



λ 0 · · · 0 0

0 λ
. . .

...
...

0 0
. . . 0 0

...
...

. . . λ 0
0 0 · · · 0 λ


(2)

Jλ,n =



λ 1 0 · · · 0

0 λ
. . .

. . .
...

0 0
. . . 1 0

...
...

. . . λ 1
0 0 · · · 0 λ


(3)

λIn−2 ⊕ Jλ,2 =



λ 0 0 · · · 0

0 λ
. . .

. . .
...

0 0
. . . 0 0

...
...

. . . λ 1
0 0 · · · 0 λ


(4)

λIn−1 ⊕ µI1 =



λ 0 0 · · · 0

0 λ
. . .

. . .
...

0 0
. . . 0 0

...
...

. . . λ 0
0 0 · · · 0 µ


Choose a basis so that the matrix of La is in jordan form. Each case

is analysed separately:
La = λIn: In this case for any isotopy class c of nonseparating simple

closed curves on S c is conjugate to a and therefore: Lc = La ⇒
LcL

−1
a = I. Because G is generated by �nitely many dehn twists

about nonseparating simple closed curves it follows that:

φ(G) = φ(〈t1, t2, . . .〉) = 〈λI〉

But then φ(G) is cyclic, but because (λI)−1 ∈ 〈λI〉, λ = 1, so the
image of φ is trivial.

La = Jλ,n: Here dim(Kern(La − λI)) = dim(span{(1, 0, . . .)}) = 1, but
dim(Kern((La−λI)2)) = dim(span{(1, 0, . . .), (0, 1, 0, . . .)}) = 2, and
because Kern((La − λI)2) must be φ(GR) invariant it follows by
lemma 13 and the assumption that the theorem holds for all sur-
faces of genus g − 1 that φ(G) is trivial.

La = λIn−2 ⊕ Jλ,2: In this case dim(Kern(La − λI)) = n− 1 therefore
the eigenspace of Lb must also be of dimension n−1. If Eaλ 6= Ebλ, then
Eaλ∩Ebλ is of dimension n−2 and φ(GR)-invariant. By Lemma 13 and
the assumption that the theorem holds for all surfaces of genus g− 1
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it follows that φ(G) is trivial. If Eaλ = Ebλ, then from lemma 12 it fol-
lows that Ecλ = Edλ for any two isotopy classes c and d of nonseparat-
ing simple closed curves on S intersecting in exactly one point. From
Theorem 4 it follows that there is a sequence of curves between a and
any other isotopy class a′ of nonseparating simple closed curves on S
intersecting each predecessor and successor in in exactly one point.
Therefore Eaλ = Ea

′

λ . Because G is generated by �nitely many dehn
twists about isotopy classes of nonseparating simple closed curves on
S it follows that for every mapping class f ∈ PMod(S), the represen-
tation of f , φ(f) must be in upper triangular form. But by Lemma 5,
the subgroup ∆GL(n,C) of GL(n,C) consisting of all upper triangu-
lar matrices is solvable. And because G is perfect by Theorem 6 it
follows with Lemma 7 that φ(G) is trivial.

La = λIn−1 ⊕ µI1: Exactly the same proof as for the case with La =
λIn−2 ⊕ Jλ,2.

�



CHAPTER 3

Epilogue

Only that day dawns to which
we are awake.
There is more day to dawn.
The sun is but a morning star.

� Henry David Thoreau

1. Outlook

The study of mapping classes, Dehn twists and linear representations thereof
has a wealth of applications in mathematics and physics. This section gives a short
outlook of topics related to the study of mapping class groups. As this is only a
short overview, de�nitions will not be given.

For example mapping class groups are related to braid groups. Classical Artin
braid groups [Art47] are just a special kind of mapping class groups. Braids also
appear in category theory.

There are important connections between the mapping class groups and Teich-
müller spaces [FM12].

In an analogous way to the Jordan canonical form, there is a similar classi�-
cation of elements of mapping class groups called the Nielsen-Thurston Classi�ca-
tion [FM12].

In physics there are applications in conformal �eld theory [Gan07], quantum
�eld theory [Buf03] and in string theory [Nag95].

2. About the creation of this thesis

Creating this thesis was certainly one of the most interesting part so far of
studying mathematics. Even though at the beginning it looked like a di�cult task
and the amount of information to research and learn seemed like a lot and keeping
track of what is important and what is not was not easy but after the initial di�culty
of learning the new theories and learning the new mathematical vocabulary was
conquered, things were gradually getting easier, and it was possible to relate the
newly learned knowledge to the already present mathematical knowledge and the
whole task didn't look so complicated anymore. After �nalizing an initial pre-draft
of the thesis on paper, most of the work that remained and was time consuming
was typesetting the text in LATEX on the computer and drawing and scanning the
graphics needed in the text. An initial attempt to create the graphics using the
latex package ps-tricks or using a vector graphics program was quickly abandoned
as it was deemed to be too time consuming. So graphics were created by hand
using a technical-pen, then scanned, enhanced using photo edit software and �nally
converted to png. ImageMagick1 was used to convert the pictures to eps, but I
realised later that Pd�atex doesn't support eps, and because I only needed pdf
output and no dvi or ps, I kept all pictures in png format only. Based on the

1http://www.imagemagick.org
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36 3. EPILOGUE

commonly used scienti�c writing style guidelines, I tried to avoid using the �rst-
person (singular) throughout the writing of the text, except in the preface and this
epilogue. The Chicago Manual of Style [Uni10] seems to be one of the most often
used style guides in scienti�c writing, but I only glanced through it quickly as I had
already written the greatest part of my thesis when I heard about it.



APPENDIX A

Additional De�nitions and Conventions used

throughout the text

Let no man who is not a Mathematician read the
elements of my work.

� Leonardo da Vinci

1. Set theoretic conventions

2. Some useful algebraic de�nitions and properties

Definition 22. A sequence of groups Gi and homomorphisms fj:

G0
f1→ G1

f2→ . . .
fn→ Gn

is called exact if for each i ∈ {1, . . . , n − 1} : Im(fi) = Kern(fi+1). An exact
sequence is called short if it is of the form:

1→ G0
f1→ G1

f2→ G2 → 1

3. Algebraic conventions and Notations

Definition 23 ([Lan02,Rot02,Art11]). If g ∈ G is a generator of a group.
Then 〈g〉 = {gn : n ∈ Z} denotes the group generated by this element using the
group operation. If S is a generating set then the group generated by it is denoted
in the same way 〈S〉 (the intersection of all subgroups of G containing S):

〈S〉 =
⋂

S⊆H⊆G

H

Relations may be indicated using the notation 〈S|R〉. 〈S〉G denotes the group nor-
mally generated (also called normal closure) by S (the intersection of all normal
subgroups of G containing S):

〈S〉G =
⋂

S⊆NEG

N

〈S〉G is the group generated by all conjugate elements of S: 〈S〉G =
〈
{gSg−1 : g ∈ G}

〉
.

4. Fundamental polygons

Every closed surface can be constructed from an even-sided oriented polygon
called fundamental polygon by gluing together pairwise identi�ed edges.[Mun00]
Fundamental polygons are useful in visualizing surfaces and in showing the action
of some mapping classes on the surface.

Example 7. Figure 1 shows examples of fundamental polygons for the sphere,
the torus and the klein bottle.
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38 A. ADDITIONAL DEFINITIONS AND CONVENTIONS USED THROUGHOUT THE TEXT

Figure 1. Examples of fundamental polygons for the sphere, the
torus and the klein bottle

Remark 13. Instead of drawing the polygon, it can also be represented by a
string of distinct letters representing each edge where identi�ed edges use the same
letter and an exponent of 1 or −1 indicates the direction of the edge. The string
is read from the polygon by reading the edges in clockwise direction, and putting
exponent of −1 on edges going in the opposite direction.

Example 8. The string representation of the fundamental polygon for the
sphere, torus and klein bottle as given in the previous example are given here:

• Sphere: abb−1a−1

• Torus: bab−1a−1

• Klein Bottle: baba−1
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