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Abstract

Given a geodesic metric space X and a non-empty closed subset Z ⊂ X, Young
showed in [You14] that undistortedness of Z can be shown given that the Assouad-
Nagata-dimension of X is finite and Z is Lipschitz n-connected. This improves upon
a previous result by Lang and Schlichenmaier in [LS05]. The aim of this thesis is to
elaborate on the proof of Young’s theorem, fill in missing pieces whenever possible
and explore some applications of the theorem. During the work some errors in the
article of Young have been found and attempts to correct those errors have been
made. Young himself fixed the last part of the proof in an Erratum [You15], these
corrections have been included in the thesis. It was possible to make some small
improvements to Young’s result, those have been added to the text.
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Chapter 1

Introduction

You can’t take three from two,
Two is less than three,
So you look at the four in the tens place.
Now that’s really four tens
So you make it three tens,
Regroup, and you change a ten to ten ones,
And you add ’em to the two and get twelve,
And you take away three, that’s nine.
Is that clear?

Tom Lehrer

The main parts of this thesis are contained in the following two chapters. Chapter 2
focuses on introducing the concepts, definitions and theorems, as well as stating the main
theorem. In Chapter 3 the proof of the main theorem is then carried out.

This thesis is based on the article “Lipschitz connectivity and filling invariants in solvable
groups and buildings” by Robert Young [You14] in which he showed that under certain
conditions, a closed subset of a metric space is undistorted given that the Assouad-
Nagata-dimension of said space is finite.

Before properly defining everything in Chapter 2, this introduction will give a short
overview of all the important concepts that are used further on.

An important role in the thesis plays the notion of Lipschitz functions between metric
spaces. That is, functions f : X → Y for which there exists a constant L > 0, such that

d(f(x), f(y)) ≤ L · d(x, y),

for any two points x, y in X. We use Lip(f) to denote the least such constant. Lipschitz
functions constitute an important class of functions in metric geometry.

The main theorem deals with metric spaces of finite Assouad-Nagata-dimension. This
definition of dimension was studied by Patrice Assouad in [Ass]. The Assouad-Nagata-
dimension of a metric space is defined as the smallest integer n ≥ 0 for which there exists
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1. Introduction

a constant c > 0 such that for all d > 0 there exists a covering of the space by sets with
diameter bounded by cd, and such that any set with diameter less than or equal to d
meets at most n+ 1 sets in the cover.

Another important concept required for the theorem is the property of Lipschitz n-
connectedness. A metric space X is called Lipschitz n-connected if there exists a constant
c > 0 such that for any 0 ≤ d ≤ n one can extend any Lipschitz map f : Sd → X to
f̄ : Dd+1 → X such that Lip(f̄) ≤ cLip(f). Here Sd and Dd+1 denote the unit sphere
and closed unit ball in Rd+1.

In the course of describing and proving the theorem one deals with a homology theory
based on Lipschitz chains. A Lipschitz d-chain in X is just a formal sum of Lipschitz
maps ∆d → X. Of particular interest will be Lipschitz chains on a simplicial complex
constructed as the nerve of a cover. The nerve of a cover is basically the simplicial
complex constructed by taking a vertex for each set in the cover, an edge for any two
intersecting sets and higher dimensional simplicies for higher number of intersections in
the cover.

By Rademacher’s theorem1, Lipschitz chains are differentiable almost everywhere, and
therefore one can assign a volume element V (x) to each point x of ∆d of some Lipschitz
map ∆d → X by sending an orthonormal basis at x along Dxf and taking the volume of
the resulting implied parallelepiped in the tangent space TxX. One can then define the
mass of a Lipschitz chain α as the integral

mass(α) =
∑∫

∆d
V (x) dx.

One can now define the filling volume of a Lipschitz d-cycle α in X as

FVd+1
X (α) = inf

∂β=α
mass(β).

We then call some subset Z of X undistorted up to dimension n if there exists some
constant c > 0 such that for any Lipschitz d-cycle α in Z with d < n, we have

FVd+1
Z (α) ≤ cFVd+1

X (α) + c.

Young’s proof of his theorem relies on a previous result by Urs Lang and Thilo Schlichen-
maier [LS05]. In their proof they constructed a covering of a space X ⊆ Z given that
either X or Z has finite Assouad-Nagata-dimension. Young used this construction slightly
modified and built with it a simplicial complex as the nerve of the cover. The simplicial
complex is constructed in such a way that simplices near to Z have diameter . ε where ε
is free to choose. A well known result from geometric measure theory states that one can
approximate Lipschitz chains with simplicial chains. Applying this so called deformation
theorem is the main idea that is used in the proof of the main theorem.

1Note that if X is an arbitrary metric space, a generalized result holds for Lipschitz maps ∆d → X
using metric differentiability. [Kir94]
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Chapter 2

Preparations

I write only for my shadow which is cast on the
wall in front of the light. I must introduce myself
to it.

Sadegh Hedayat

2.1 Metric Spaces

Definition 1 Let X be a set and let d : X ×X → R≥0 ∪ {∞} be a function such that
for all x, y, z ∈ X

1. d(x, y) > 0 if x 6= y, and d(x, x) = 0, (Positiveness)

2. d(x, y) = d(y, x), (Symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality)

Then d is called metric1 and the space (X, d) is called metric space. [BI01]

Given a metric space (X, d) and a subset Y ⊆ X, define by diam(Y ) := sup {d(x, y) |x, y ∈ Y }
the diameter of the set Y .[LS05]

Remark 1 Note that in a metric space (X, d) also the reverse triangle inequality
holds for all x, y, z ∈ X

|d(x, y)− d(x, z)| ≤ d(y, z). (2.2)

1Sometimes also called distance function or simply distance.
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2. Preparations

γ(0)

γ(1)

Figure 2.1: Definition of path length as supremum of sums over distances

2.1.1 Paths and Geodesics

Definition 2 Let (X, d) be a metric space. A continuous map γ : [0, 1]→ X is called a
path. Define by

l(γ) := sup
{

n∑
i=1

d(γ(ai−1), γ(ai))
∣∣∣∣∣ 0 = a0 < a1 < . . . < an = 1

}

the length of the path γ where the supremum is taken over all finite sequences
(a0, a1, . . . , an) of the form 0 = a0 < a1 < . . . < an = 1 where n < ∞. A path γ
with l(γ) = d(γ(0), γ(1)) is called a geodesic path. A metric space (X, d) in which
for any two points there exists a geodesic path connecting them, is called a geodesic
metric space. If for a metric space X there exists a D > 0 such that for any two points
x, y ∈ X there exists a path γ : [0, 1]→ X with endpoints x respectively y and length
l(γ) ≤ D · d(x, y), then the space (X, d) is called quasi-convex metric space. [Pap14]

2.2 Lipschitz Functions, Extensions and Homology
Integral to the entire following discussion is the notion of Lipschitz continuity which is
defined as follows.

Definition 3 A function f : X → Y between two metric spaces (X, dX) and (Y, dY ) is
called Lipschitz (continuous) if there exists a constant L ≤ 0 such that

dY (f(x), f(y)) ≤ L · dX(x, y)

for any two points x, y ∈ X. The smallest possible choice for L is called Lipschitz con-
stant and will be denoted by Lip(f). If f in addition has an inverse map f−1 : f(X)→ X
which is Lipschitz continuous as well, then f is called bi-Lipschitz continuous.

Notation 1 To emphasise the associated Lipschitz constant L of a function f , we may
write f is L-Lipschitz continuous.

Furthermore one is interested in extension properties of Lipschitz functions.
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2.2. Lipschitz Functions, Extensions and Homology

Definition 4 Given two metric spaces as above together with a subset X ′ ⊆ X as well
as an L-Lipschitz function f : X ′ → Y , if there exists a constant c and a Lipschitz
function f̄ : X → Y such that

• f̄
∣∣∣
X′

= f and,

• Lip(f̄) = cL,

then f̄ is called a cL-Lipschitz extension of f . If there exists a constant c′ such that
for any subset X ′ ⊆ X and L-Lipschitz function f : X ′ → Y there exists a c′L-Lipschitz
extension of f , then the pair ((X, dX), (Y, dY )) of metric spaces is said to have the
Lipschitz extension property. [Sch05]

Notation 2 In this text the terms “map” and “function” are used interchangeably.

Notation 3 In the following the d-dimensional closed unit disk is denoted by

Dd :=
{
~x = (x1, . . . , xd) ∈ Rd

∣∣∣ ‖~x‖ ≤ 1
}
,

and the d-dimensional unit sphere by

Sd :=
{
~x = (x0, . . . , xd) ∈ Rd+1

∣∣∣ ‖~x‖ = 1
}
,

both are equipped with the induced metric.

Definition 5 A space X is called Lipschitz n-connected if there exists a constant
c > 0 such that for any 0 ≤ d ≤ n and any L-Lipschitz map f : Sd → X, there exists an
cL-Lipschitz extension f̄ : Dd+1 → X of f . [BF09; You14]

Definition 6 Let X be a space and A ⊆ X a subset of X. A is called Lipschitz retract
of X if there exists a Lipschitz function f : X → X such that

• f
∣∣
A

= idA,

• f(X) = A.

A function f satisfying the above properties is called a Lipschitz retraction.[Hei05]

Notation 4 Let X be a set and let f : X → R and g : X → R be functions. We write
f . g if there exists a constant c > 0 such that f(x) ≤ cg(x) for all x ∈ X. Furthermore
we write f ∼ g iff f . g and g . f .

2.2.1 Homology

We continue by constructing a homology theory based on Lipschitz chains. This homology
theory satisfies the Eilenberg–Steenrod axioms for a homology theory. See for example
[RS09; DHP; Mon13].
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2. Preparations

Definition 7 (Homology theory based on Lipschitz chains) Let the following de-
note the standard n-simplex [Hat02]

∆n :=
{

(t0, . . . , tn) ∈ Rn+1
∣∣∣∣∣∑
i

ti = 1 and ti ≥ 0 ∀i
}
.

A singular n-simplex in a given space X is a continuous map σ : ∆n → X. If this map
is additionally Lipschitz continuous then it is called singular Lipschitz n-simplex.

Given an abelian group G, finite formal sums of the form α =
∑
i niσi where ni ∈ G and

σi : ∆n → X continuous are called singular n-chains. A singular Lipschitz n-chain
is a singular n-chain α =

∑
i niσi where each σi : ∆n → X is Lipschitz continuous.

Denote by Cn(X; G) (respectively CL
n(X; G)) the free abelian group with basis the

singular n-simplices of X (respectively singular Lipschitz n-simplices of X) and coefficients
in G. Furthermore write Cn(X) for Cn(X,Z) and CL

n (X) for CL
n (X,Z).

Furthermore given a simplicial complex X denote by C∆
n (X; G) the free abelian group

with basis the open n-simplices of X and coefficients in G. This consists of simplicial
n-chains which can be written as finite formal sums

∑
i nie

n
i where ni ∈ G and eni is an

open n-simplex of X. This is equivalent to a definition where we take the finite formal
sums

∑
i niσi where each σi : ∆n → X is the unique characteristic map of eni with image

the closure of eni [Hat02]. As above we define C∆
n (X) := C∆

n (X;Z).

Notation 5 In the following if not otherwise indicated maps are always continuous. If
there is no risk of ambiguity we will write Cn(X) instead of C∆

n (X). Furthermore from
now on coefficients will always be in Z.

Remark 2 Note that simplicial chains are by definition also Lipschitz chains.

The boundary map ∂L : Cn(X) → Cn−1(X) for Lipschitz n-chains can be defined
[RS09] analogously to the case [Hat02] of singular n-chains. If the context is clear the
boundary is written without the lower L simply as ∂.

Definition 8 Define the boundary map ∂ as follows. Given a Lipschitz n-chain
α =

∑
i niσi, let

∂α :=
∑
i

ni∂σi,

where we define for Lipschitz continuous σ : ∆n → X the boundary as

∂σ :=
n∑
i=0

(−1)nσ ◦ Fni .

Here Fni : ∆n−1 → ∆n is the i-th face map defined as the map of the inclusion of the
i-th face of ∆n in ∆n:

∆n−1 ∼=

(t0, . . . , ti−1, 0, ti+1, . . . , tn) ∈ Rn+1

∣∣∣∣∣∣
∑
k 6=i

tk = 1 and tk ≥ 0 ∀k

 ⊆ ∆n.
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2.2. Lipschitz Functions, Extensions and Homology

x

Dxσ

σ(x)

ei

ej

Figure 2.2: Parallelepiped used in the definition of mass

Definition 9 Elements of Zn(X) := ker ∂n are called Lipschitz n-cycles and ele-
ments of Bn(X) := im ∂n+1 are called Lipschitz n-boundaries. We may write
Z∆
n (X), B∆

n (X), ZL
n (X), BL

n(X) and so on to emphasise the associated chains and bound-
ary maps.

Notation 6 Given two spaces respectively simplicial complexes X and Y together with
their chain groups and a map f : X → Y , we denote by f] : C•(X) → C•(Y ) the
canonical map on the level of chains.

2.2.2 Jacobian and Mass

Definition 10 ([Eps92]) Let X be a connected Riemannian manifold and let σ : ∆k →
X be a singular Lipschitz k-simplex. By Rademacher’s theorem (Theorem B.2.9), σ
is differentiable almost everywhere. Therefore if the derivative Dxσ at a given point
x ∈ ∆k exists it sends an orthonormal basis at x to a k-tuple of vectors tangent to X at
σ(x). Those vectors define a parallelepiped in the tangent space, with a volume V (x) ≥ 0
given by the riemannian structure of X. The Lipschitz map may not be differentiable
everywhere, in those cases we set V (x) = 0 for those points. See Figure 2.2.

Moreover define the k-mass (or simply mass) of a simplex as

mass(σ) =
∫

∆k
V (x) dx

and the mass of a Lipschitz k-chain α =
∑
i niσi as

mass(α) =
∑
i

|ni|mass(σi).

The mass may be written massk to emphasise the dimension.
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2. Preparations

Remark 3 Note that for an arbitrary metric space (X, d) a generalized version of
Rademacher’s theorem holds involving metric differentiability: Let f : Rn → X be a
Lipschitz continuous function, then the metric differential

MD(f, p)(x) := lim
r↓0

d(f(p+ rx), f(p))
r

of f exists in almost all points p ∈ Rn of Rn. Furthermore one can assign a volume
element V (p) to each point p ∈ Rn. Therefore the following discussion remains true if we
consider arbitrary metric spaces instead of Riemannian manifolds.[Kir94; Bon14; AD09]

Proposition 1 Let X and Y be connected Riemannian manifolds, f : X → Y an
L-Lipschitz map and α ∈ Ck(X) a Lipschitz chain. Then:

mass(f](α)) ≤ Lk mass(α).

Proof It suffices to show the statement for a singular Lipschitz k-simplex σ : ∆k → X.
Note that by the chain rule we have Dx(f ◦ σ) = Dσ(x)f ◦Dxσ. Because f has Lipschitz
constant L, for any basis vector ~ei in an orthonormal basis at x we have the relation∣∣∣(Dσ(x)f ◦Dxσ)~ei

∣∣∣ ≤ L · |(Dxσ)~ei|. Adopting the notation Vf◦σ(x) and Vσ(x) for the
volume of the parallelepiped resulting from sending an orthonormal basis at x along
Dx(f ◦ σ) respectively Dxσ as defined above we see that

mass(f ◦ σ) =
∫

∆k
Vf◦σ(x) dx

≤
∫

∆k
Lk · Vσ(x) dx = Lk ·

∫
∆k
Vσ(x) dx = Lk mass(σ). �

2.3 Filling Volume and Assouad-Nagata Dimension

Definition 11 Define the filling volume [You08] of a Lipschitz n-cycle α ∈ Cn(X) as

FVn+1
X (α) := inf

{
mass(α′)

∣∣α′ ∈ Cn+1(X) and ∂α′ = α
}
.

Given Z ⊆ X, if there is some c > 0 such that for any Lipschitz n-cycle α ∈ Zn(Z) with
n < m we have that

FVn+1
Z (α) ≤ cFVn+1

X (α) + c

then we say that Z is undistorted up to dimension m [You14; BW07].

Corollary 1 Given two connected Riemannian manifolds X and Y , a Lipschitz (n− 1)-
chain α ∈ Cn−1(X) and an L-Lipschitz function f : X → Y . Then the filling volume
satisfies the following relation:

FVn
Y (f](α)) ≤ Ln FVn

X(α).
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2.4. Statement of the Main Theorem

Proof This directly follows from Proposition 1 as follows

FVn
Y (f](α)) = inf

∂βY =f](α)
mass(βY )

≤ inf
∂βX=α

mass(f](βX))

≤ inf
∂βX=α

Ln mass(βX) = Ln FVn
X(α).

Here βX ∈ Cn(X) and βY ∈ Cn(Y ) denote Lipschitz n-chains in X respectively Y . �

Notation 7 A covering by sets of diameter at most c is called a c-bounded covering.
The multiplicity of a cover B is defined to be the maximal number of different sets in
the cover with non-empty intersection.

multiplicity(B) := max # {B1, . . . , Bl ∈ B |B1 ∩ · · · ∩Bl 6= ∅}

Furthermore a cover is said to have s-multiplicity at most n, if any set D of diameter
at most s intersects not more than n sets in the cover.

Remark 4 In some articles the multiplicity of a cover is given by the maximal number
of different sets in the cover with non-empty intersection minus 1.

Definition 12 Define the Assouad-Nagata dimension of X as the smallest integer
n =: dimAN(X) for which there exists a c > 0 such that for all d > 0 there is a cd-bounded
covering X =

⋃
lXl of X with d-multiplicity at most n+ 1.[You14]. Furthermore denote

by ConstAN(X) := c the implicit constant.

Proposition 2 (Proposition 2.2.1 in [Sch05]) Given a space X, if Y ⊆ X then
dimAN(Y ) ≤ dimAN(X). Furthermore ConstAN(X) = ConstAN(Y ).

2.4 Statement of the Main Theorem
We are now ready to state the main theorem

Theorem 1 (Theorem 1.3 in [You14]) Let X be a quasi-convex metric space and let
Z ⊂ X be a non-empty closed subset with the metric given by the restriction of the metric
of X and dimAN(Z) <∞.2 Suppose that one of the following conditions is true:

• Z is Lipschitz n-connected or,

• X is Lipschitz n-connected, and if Xp, p ∈ P are the connected components of
X \ Z, then the sets Hp = ∂Xp are Lipschitz n-connected with uniformly bounded
implicit constant.

Then Z is undistorted up to dimension n+ 1.
2Young stated the result for dimAN(X) <∞, we were able to improve the result and only require

dimAN(Z) <∞.
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2. Preparations

The proof of the theorem is based on the proof of the following two theorems by Lang
and Schlichenmaier:

Theorem 2 (Theorem 1.5 in [LS05]) Let X and Y be metric spaces. Given a non-
empty closed subset Z ⊂ X with dimAN(X \ Z) ≤ n < ∞, if Y is Lipschitz (n − 1)-
connected, then there exists a constant c ≥ 0 such that for any L-Lipschitz function
f : Z → Y there exists a cL-Lipschitz extension f̄ : X → Y of f .

Using the following second version Lang and Schlichenmaier gave of the theorem, we can
improve the conditions of the theorem, thus only requiring dimAN(Z) < ∞ instead of
dimAN(X) <∞.

Theorem 3 (Theorem 1.6 in [LS05]) Let X and Y be metric spaces. Given a non-
empty closed subset Z ⊂ X with dimAN(Z) ≤ n − 1 < ∞, if Y is Lipschitz (n − 1)-
connected, then there exists a constant c ≥ 0 such that for any L-Lipschitz function
f : Z → Y there exists a cL-Lipschitz extension f̄ : X → Y of f .

Two small corollaries follow directly from Lang and Schlichenmaier’s two theorems.

Corollary 2 ([You14]) Let X be a metric space and Z ⊂ X a Lipschitz (n − 1)-
connected, non-empty closed subset with dimAN(X \ Z) ≤ n <∞. Then Z is a Lipschitz
retract of X and Z is undistorted up to any dimension.

Proof Consider the identity map i : Z → Z. By Theorem 2.4.2 this can be extended to
a cL-Lipschitz map ī : X → Z. This map is a retraction of X onto Z. Let α ∈ Zk−1(Z),
β ∈ Ck(X) such that ∂β = α, then:

∂ī](β) = ī](∂β) = ī](α) = α

and
ī](β) ∈ Ck(Z).

Using Corollary 1 we get that FVk
Z(α) ≤ (cL)k FVk

X(α) which proves the statement. �

Corollary 3 ([You14]) Let X be a metric space and Z ⊂ X a Lipschitz (n − 1)-
connected, non-empty closed subset with dimAN(Z) ≤ n− 1 <∞. Then Z is a Lipschitz
retract of X and Z is undistorted up to any dimension.

Proof The same proof as in the previous corollary works here as well. �

The proof will require further definitions and tools which we will introduce in the following
sections.
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2.5. Riemannian Simplical Complexes and QC Complexes

2.5 Riemannian Simplical Complexes and QC Complexes

Definition 13 A Riemannian simplicial complex is a simplicial complex X together
with a metric dX which gives each simplex the structure of a Riemannian manifold with
corners.[You14; Joy09] If additionally there exists a constant C such that for all simplices
∆k ∈ X and all x, y ∈ ∆k we have that C−1d∆(x, y) ≤ dX(x, y) ≤ Cd∆(x, y), where d∆
is the metric on some scaling of the standard k-simplex, then we call X a QC complex
(or quasi-conformal complex).[You14]

Two variations of the following well known theorem from geometric measure theory will
be used in the constructions for the proof.

Theorem 4 (Deformation Theorem (Theorem 10.3.3 in [Eps92])) Let M be a
Riemannian manifold and (τ, h : τ → M) be a triangulation (that is τ is a simplicial
complex homeomorphic to M with h the associated homeomorphism) of M . Then there
exists a constant c > 0 such that for each Lipschitz k-cycle α ∈ ZLk (M) there exist a
smooth cycle α̃ ∈ Z∆

k (τ) whose simplices all consist of simplicial maps and a chain
β ∈ CLk+1(M) such that:

• α = α̃+ ∂β,

• massk(α̃) ≤ c ·massk(α),

• massk+1(β) ≤ c ·massk(α̃).

Furthermore α̃ and β are contained in the smallest subcomplex of τ containing α.

For simplicial complexes we have the following two versions. They will be used during
the proof of the main theorem and in the preceding lemmas.

Theorem 5 (Deformation Theorem for simplicial complexes (Theorem 2.2 in [You14]))
Let Σ be a simplical complex where each simplex has the metric of the standard sim-
plex of diameter s (a scaled simplicial complex). Then there is a constant c depending
only on dim(Σ) such that for all Lipschitz k-chains3 α ∈ CL

k (Σ) with ∂α ∈ Ck−1(Σ)
simplicial there exist a simplicial k-chain P (α) ∈ Ck(Σ) and a Lipschitz (k + 1)-chain
Q(α) ∈ CL

k+1(Σ) such that:

1. mass(P (α)) ≤ c ·mass(α),

2. mass(Q(α)) ≤ cs ·mass(α),

3. ∂Q(α) = α− P (α),

4. ∂α = ∂P (α).

3Young requires α to be a cycle, but in the applications of the theorem in the article α is not a cycle.
We will instead require ∂α to be simplicial.
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2. Preparations

α

P (α)

Q(α)

Figure 2.3: Illustration of the deformation theorem for simplicial complexes

Corollary 4 (Theorem 2.3 in [You14]) Let Σ be a QC complex. Then there exists
a constant c > 0 depending only on dim Σ such that for all Lipschitz k-chains α ∈
CL
k (Σ) with ∂α ∈ Ck−1(Σ) simplicial there exists a simplicial k-chain P (α) ∈ Ck(Σ)

approximating α such that massP (α) ≤ c ·mass(α) and ∂P (α) = ∂α.

The deformation theorem for simplicial complexes is illustrated in Figure 2.3.
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Chapter 3

Proof of the Main Theorem

If you have to dry the dishes
(Such an awful boring chore)
If you have to dry the dishes
(’Stead of going to the store)
If you have to dry the dishes
And you drop one on the floor
Maybe they won’t let you
Dry the dishes anymore

Shel Silverstein

This chapter will consist of the proof of the main theorem (Theorem 2.4.1).

3.1 Outline of the Proof of the Main Theorem

1. Lemma 3: Let ε > 0. Cover X by sets such that sets close to Z have small
diameter (. ε) whereas sets far away have large diameter and the covering of Z is
4ε(c+ 1)-bounded.

2. Construct a Riemannian simplicial complex Σ as the nerve of the cover from the
previous step. Endow it with a metric such that the diameter of each simplex is
comparable to the diameter of the sets that give it its vertices. This makes Σ a QC
complex.

3. Lemma 4: Construct a Lipschitz function g : X → Σ with Lipschitz constant
independent of ε sending points in X to the QC complex in a natural way.

4. Lemma 6: Show that the second condition in the main theorem implies the first
one. We therefore only need to show the theorem in case condition one holds.

5. Lemma 7: Construct a Lipschitz function h : Σ(0) → Z with Lipschitz constant
independent of ε and such that d(h ◦ g(z), z) . ε for every z ∈ Z.

17



3. Proof of the Main Theorem

6. Lemma 9: Construct a simplicial chain α′ and two annuli γ and λ as approximations
like shown in Figure 3.5. Estimate the masses of the annuli.

7. Proof on page 34: Given a Lipschitz cycle α in Z and a Lipschitz cycle β in X,
use the deformation theorem to approximate g](β) − γ by a simplicial cycle P
in Σ. This in turn gives us a Lipschitz chain λ + h](P ) in Z. We will find that
∂(λ+ h](P )) = α. And furthermore that the mass of λ+ h](P ) is comparable to
the mass of β.

3.2 Proof of the Main Theorem
In the proof of Theorem 1.5 in the article of Lang and Schlichenmaier [LS05] they
constructed a covering. This result has been condensed into the following lemma. It will
be used in constructing another cover in the Lemma 3 below.

Lemma 1 (Proof of Theorem 1.5 / Application of Theorem 5.2 in [LS05]) Let
X be a metric space. Furthermore let Z ⊂ X be a non-empty, closed subset of X with
dimAN(X \ Z) <∞. Then there exist constants α, β > 0 and a covering B = {Bi}i∈I of
X \ Z where Bi ⊆ X \ Z, such that:

1. diam(Bi) ≤ αd(Bi, Z) for all i ∈ I,

2. every set D ⊆ X \ Z with diam(D) ≤ βd(D,Z) meets at most dimAN(X \ Z) + 1
members of B.

Furthermore the function σi : X \ Z → R, given by

σi = max {0, δd(Bi, Z)− d(x,Bi)}

with δ := β
2(β+1) satisfies

# {i ∈ I |σi(x) > 0} ≤ dimAN(X \ Z) + 1.

Remark 5 Explicitly the constants needed for the above lemma are given in the proof
of the theorem as: α = 2c + 1, β = 1

3+2c , where c := ConstAN(X \ Z). It follows that
α > 1 and 0 < β < 1

3 and furthermore α = β−1 − 2.

A similar version of the previous lemma exists which only requires the Assouad-Nagata
dimension of Z to be finite.

Lemma 2 (Proof of Theorem 1.6 / Application of Theorem 5.2 in [LS05]) Let
X be a metric space. Furthermore let Z ⊂ X be a non-empty, closed subset of X with
dimAN(Z) < ∞. Then there exist constants α, β > 0 and a covering B = {Bi}i∈I of
X \ Z where Bi ⊆ X \ Z, such that:
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3.2. Proof of the Main Theorem

1. diam(Bi) ≤ αd(Bi, Z) for all i ∈ I,

2. every set D ⊆ X \ Z with diam(D) ≤ βd(D,Z) meets at most dimAN(Z) + 2
members of B.

Furthermore the function σi : X \ Z → R, given by

σi = max {0, δd(Bi, Z)− d(x,Bi)}

with δ := β
2(β+1) satisfies

# {i ∈ I |σi(x) > 0} ≤ dimAN(Z) + 2.

Remark 6 Explicitly the constants needed for the above lemma are given in the proof
of the theorem as: α = 56 + 138c′ + 108c′2 + 27c′3, β = min{1, n

√
4 + 3c′ − 1}, where

c := ConstAN(Z) and c′ ≥ 0 depends only on c and n. It follows that α > 1 and
0 < β < 1.

We can make sure that each set Bi of the covering is contained in a connected component
of X \ Z by slightly weakening the second property of the lemma:

Corollary 5 Let X be a metric space. Furthermore let Z ⊂ X be a non-empty, closed
subset of X with dimAN(Z) < ∞. Then there exist constants α, β > 0 and a covering
B = {Bi}i∈I of X \ Z where Bi ⊆ X \ Z and each Bi is contained in a connected
component of X \ Z, such that:

1. diam(Bi) ≤ αd(Bi, Z) for all i ∈ I,

2. every set D ⊆ X \ Z with diam(D) ≤ βd(D,Z) which is contained in a connected
component of X \ Z meets at most dimAN(Z) + 2 members of B.

Furthermore the function σi : X \ Z → R, given by

σi = max {0, δd(Bi, Z)− d(x,Bi)}

with δ := β
2(β+1) satisfies

# {i ∈ I |σi(x) > 0} ≤ dimAN(Z) + 2.

Proof Let B̄ = {Bi}i∈I be the cover from the lemma above. If Xp, p ∈ P are the
connected components of X \ Z, then let Bp

i := Bi ∩Xp and let B := {Bp
i | i ∈ I, p ∈ P}.

These sets satisfy the following properties:

• d(Bi, Z) ≤ d(Bp
i , Z) for any i ∈ I and p ∈ P ,

• diam(Bp
i ) ≤ diam(Bi) for any i ∈ I.
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3. Proof of the Main Theorem

We check the required properties:

• diam(Bp
i ) ≤ diam(Bi) ≤ αd(Bi, Z) ≤ αd(Bp

i , Z),

• on each connected component of X \ Z, the number of sets covering it remains the
same, because for any p ∈ P

# {i ∈ I |Bi ∩Xp 6= ∅} = # {(i, q) ∈ I × P |Bi ∩Xp 6= ∅, q = p} . �

Lemma 3 (Lemma 2.4 in [You14]) Let X be a metric space and Z ⊂ X a non-
empty, closed subset of X with dimAN(Z) <∞. Then there are constants α, β, γ > 0 and
δ := β

2(β+1) depending only on X and Z, such that for each ε > 0 there exists a covering
D = {Dk}k∈K =

{
B̂ı̂
}
ı̂∈Î
∪
{
C̄j
}
j∈J

of X where Dk ⊆ X and functions r : K → R,
τk : X → R given by

r(k) =
{
δ · d(Dk, Z), k ∈ Î
ε, k ∈ J

τk(x) = max {0, r(k)− d(x,Dk)}

such that for all k ∈ K:

1. diam(Dk) . r(k),

2. d(Dk, Z) . r(k),

3. If d(Dk, Z) ≥ ε, then {τk > 0} is contained in a connected component of X \ Z,

4. The cover of X given by {{τk > 0}}k∈K has multiplicity at most 2 dimAN(Z) + 3,

5. If {τk > 0} ∩ {τk′ > 0} 6= ∅, then γ−1 r(k′) ≤ r(k) ≤ γ r(k′).

Proof We start by constructing the cover D using the cover from the Corollary 5 to the
Lemma 2 above. This guarantees that each Bi ∈ B is contained in a connected component
of X \ Z. Let Nε(Z) := {x ∈ X | d(x, Z) < ε} denote the open ε-neighbourhood of Z.
Furthermore let

Î := {ı̂ ∈ I |Bı̂ 6⊆ Nε(Z)}

and set B̂ı̂ := Bı̂ ∩ (X \Nε(Z)). Denote this cover by B̂ :=
{
B̂ı̂
}
ı̂∈Î

. B̂ covers X \Nε(Z).

Let c := ConstAN(Z). Since dimAN(Z) < ∞, for s := 4ε there exists a cs-bounded
covering C := {Cj}j∈J of Z with sets Cj ⊆ Z in Z and with s-multiplicity at most
dimAN(Z) + 1. We increase the thickness of those sets by setting C̄j := Nε(Cj) ⊆ Nε(Z).
For the resulting sets we know that

diam(C̄j) ≤ 4εc+ 2ε.
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3.2. Proof of the Main Theorem

X \Nε(Z)

Nε(Z)
Z

Figure 3.1: Illustration of the cover constructed in Lemma 3.

We denote this covering by C̄ :=
{
C̄j
}
j∈J

. Let D := B̂ ∪ C̄ and furthermore K := Î t J .

We will call sets Dk with k ∈ Î of kind B and if k ∈ J then of kind C. The constructed
cover is illustrated in Figure 3.1.

For sets Dk of kind B, we know that because Dk may not lie in Nε(Z) therefore the
following inequality must hold

ε ≤ d(Dk, Z). (3.2)

For (1), note that if Dk is of kind B then diam(Dk) ≤ αd(Dk, Z) by item 1 in Corollary 5
above. If Dk is of kind C then diam(Dk) ≤ 4cε+ 2ε = ε(4c+ 2). We can therefore take
c1 := max

{
αδ−1, (4c+ 2)

}
as constant and we have that diam(Dk) ≤ c1r(k).

To show (2), consider that if Dk is of kind B then r(k) = δd(Dk, Z). Clearly d(Dk, Z) =
δ−1r(k). Otherwise if Dk is of kind C then r(k) = ε and δd(Dk, Z) = 0. Thus we can
take the constant to be c2 := δ−1 and get d(DK , Z) ≤ δ−1r(k).

Statement (3) can be shown as follows. If Dk is such that d(Dk, Z) ≥ ε then Dk is clearly
of kind B and r(k) = δd(Dk, Z). From the definition of τ we can see that τk

∣∣
Dk
≡ r(k),

so {τk > 0} lies in the same connected component as Dk.

For (4), consider the following. We will first show that the cover {{τk > 0}}k∈Î has
multiplicity at most dimAN(Z) + 2. To do this we can follow the same argument as
in the proof of the properties of σ in [LS05]: Let x ∈ X \ Z. For every k ∈ Î with
x ∈ {τk > 0} take an xk ∈ Dk with d(x, xk) < r(k) = δd(Dk, Z). We then know that
r(k) = δd(Dk, Z) ≤ δd(xk, Z). Let D be the set of those xk. The set D satisfies

diam(D) = sup
{
d(y, y′)

∣∣ y, y′ ∈ D} ≤ 2δ sup
k
d(xk, Z) ≤ 2δ(diam(D) + d(D,Z)).
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3. Proof of the Main Theorem

Substituting the constants and calculating

diam(D) ≤ 2 β

2(β + 1)(diam(D) + d(D,Z))⇐⇒ diam(D) ≤ βd(D,Z)

shows that D satisfies condition 2 of Corollary 5. So the cover {{τk > 0}}k∈Î has
multiplicity at most dimAN(Z) + 2.

It remains to show that the cover {{τk > 0}}k∈J has multiplicity at most dimAN(Z) + 1.
Assume for a contradiction, that there is a x ∈ X such that

] {j ∈ J | {τj > 0} ∩ {x} 6= ∅} > dimAN(Z) + 1.

This is equivalent to the condition

]
{
j ∈ J

∣∣∣ C̄j ∩Nε({x}) 6= ∅
}
> dimAN(Z) + 1,

which we can further rewrite as

] {j ∈ J |Cj ∩N2ε({x}) 6= ∅} > dimAN(Z) + 1.

But we know that diam(N2ε({x})) ≤ 4ε and therefore N2ε({x}) intersects at most
dimAN(Z) + 1 sets in the cover {Cj}j∈J , which is a contradiction.

We have thus shown that the cover of X by sets {{τk > 0}}k∈K has multiplicity at most
2 dimAN(X) + 3.

For point (5) assume {τk > 0} ∩ {τk′ > 0} 6= ∅ and consider the two cases r(k′) = ε and
r(k′) = δd(D′k, Z):

1. Suppose r(k′) = ε, then either r(k) = ε or ε ≤ d(Dk, Z) = δ−1r(k) by (3.2).

2. If on the other hand r(k′) = δd(Dk′ , Z), then one can build a path with lengths
multiples of r(k) from Dk′ to Z, see Figure 3.2. From the figure we can see that

δ−1r(k′) < δ−1r(k) + r(k)c1 + r(k) + r(k′)

which we can rewrite as

r(k′)(δ−1 − 1) < r(k)(δ−1 + 1 + c1).

Because of 0 < δ < 1
2 we know that δ−1 > 2 and we can divide to get

r(k′) < r(k)δ
−1 + 1 + c1
δ−1 − 1 .

Finally by symmetry we get that

δ−1 − 1
δ−1 + 1 + c1

r(k) < r(k′) < r(k)δ
−1 + 1 + c1
δ−1 − 1

which is what we needed to show. �
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3.2. Proof of the Main Theorem

Z

≤ δ−1r(k)

≤ diam(Dk) ≤ c1r(k)

< r(k) < r(k′)

= δ−1r(k′) = d(Dk′ , Z)

Dk Dk′

Figure 3.2: Construction for proof of Lemma 3, item 5.

Corollary 6 The function τk(·) is 1-Lipschitz.

Proof Let x, y ∈ X. If τk(x) 6= 0 and τk(y) 6= 0 then

|τk(x)− τk(y)| = |d(x,Dk)− d(y,Dk)| ≤ d(x, y)

by the reverse triangle inequality (2.2). If on the other hand τk(y) = 0 then d(y,Dk) ≥ r(k)
and therefore

|τk(x)| ≤ |r(k)− d(x,Dk)| ≤ |d(y,Dk)− d(x,Dk)| ≤ d(x, y). �

Definition 14 Given a covering C of a space X, define the nerve of the cover [Bot95]
C to be the simplicial complex K constructed as follows:

• There is one vertex vi for each element Ui ∈ C,

• There is an edge connecting vi and vj iff Ui ∩ Uj 6= ∅ for the corresponding sets in
the cover,

• And in general, there is a n-simplex for each n+ 1 element subset U ⊆ C for which⋂
U 6= ∅.

Let Σ be the nerve of the cover {{τk > 0}}k∈K constructed in the lemma above. Denote
the vertex set by V(Σ) = {vk}k∈K . Let s : Σ→ R be a function such that s(vk) = r(k)
on each vertex and s is affine on each simplex. Furthermore define a Riemannian metric
xc on each simplex of Σ by dx2

c = s2 dx2. Denote the distance function induced by this
metric by dC : Σ× Σ→ R≥0.
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X

{τk > 0}

{τk′ > 0}

Σ

•x

g

vk •

•

•

•

• •

•

•g(x)
vk′

•

Figure 3.3: Figure for Lemma 4

Corollary 7 Given a simplex σ = 〈vk1 , . . . , vkn〉 of Σ, then the function s satisfies
γ−1r(k1) ≤ s ≤ γr(k1) on σ. Therefore the metric makes Σ into a quasi-conformal
complex.

Definition 15 Given a simplicial complex K and a vertex v in K, the star of v is
defined as the union of all simplices in C having v as a vertex. [Bot95]

Lemma 4 (Lemma 2.5 in [You14]) Under the assumptions of the main theorem,
there exists a Lipschitz map g : X → Σ with Lip(g) independent of ε. Furthermore, if
x ∈ {τk > 0}, then g(x) is in the star of vk.

Proof Remember the definition of the standard simplex

∆n :=
{
~v = (v0, . . . , vn) ∈ Rn+1

≥0

∣∣∣∣∣ ‖~v‖1 :=
n∑
i=0

vi = 1
}

and note that this can also be viewed as1

∆n
K :=

{
p : (n+ 1)→ [0, 1]

∣∣∣∣∣ ‖p‖1 :=
n∑
i=0

p(i) = 1
}
.

1Here (n+ 1) denotes the discrete set of n+ 1 elements.
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Define by
∆K := {p : K → [0, 1] | ‖p‖1 = 1}

the infinite simplex where K is the set from the construction above. We continue
by constructing an injective simplicial map Σ ↪→ ∆K . Because simplicial maps are
determined by the effect of the map on the vertices it suffices to send vk to pk : K → [0, 1]
where

pk(i) =
{

1, i = k

0, i 6= k
.

Using this injection we may view Σ as a subcomplex of ∆K .

Let
g(x)(k) := τk(x)

τ̄(x)
where

τ̄(x) =
∑
k∈K

τk(x).

Using a compact notation we may write gk(x) for g(x)(k). Note that g(x) : K → [0, 1],
and thus g defines a function g : X → Σ ⊆ ∆K . We need to show that g is Lipschitz.
Because X is a quasi-convex metric space it is sufficient to show the condition only for
points “close” to each other. Let x, y ∈ X be such that d(x, y) < δ2ε. Let Sx and Sy be
the smallest simplices of Σ which contain g(x) respectively g(y).

Claim 1: Sx and Sy share one common vertex vm.

Proof of Claim 1: Consider the following cases:

1. If d(x, Z) < ε then, there exists a Dk of kind C with x ∈ Dk and from r(k) = ε it
follows τk(x) = max{0, ε− d(x,Dk)} = ε. Because τk is 1-Lipschitz we know that
|ε− τk(y)| ≤ d(x, y) < δ2ε which implies τk(y) ≥ ε(1 − δ2) > 0 and we can take
m = k.

2. If d(x, Z) ≥ ε then there is some Dk of kind B with x ∈ Dk and r(k) = δd(Dk, Z)
therefore τk(x) = δd(Dk, Z). From equation (3.2) we know δd(Dk, Z) ≥ ε so
τk(x) ≥ ε which forces τk(y) > 0. We can take m = k. �

Claim 2: There exists an L > 0 such that dC(g(x), g(y)) ≤ L · d(x, y) for all x, y ∈ X
with d(x, y) < δ2ε.

Proof of Claim 2: From Lemma 3 and Corollary 7 we know that γ−1 r(m) ≤ s ≤ γ r(m)
on Sx ∪ Sy. The Riemannian metric on Σ induces a distance function dC . If gm denotes
the metric tensor, we can write

dC(g(x), g(y)) = inf
γp

∫ b

a

√
gmγp(t)(γ̇p(t), γ̇p(t)) dt,
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where the infinum runs over all paths γp : [a, b]→ Σ, with a < b and γp(a) = g(x) and
γp(b) = g(y). We calculate2

dC(g(x), g(y)) = inf
γp

∫ 1

0

√
s(γp(t))2 · γ̇p(t)2 dt

≤
∫ 1

0

√
s(g(x)(1− t) + g(y)t)2 ·

∑
k∈Σ(0)

|g(x)(k)− g(y)(k)|2 dt

≤
∫ 1

0

√
(γr(m))2 ·

∑
k∈Σ(0)

|g(x)(k)− g(y)(k)|2 dt

=
∫ 1

0
(γr(m)) ·

√ ∑
k∈Σ(0)

|g(x)(k)− g(y)(k)|2 dt

≤
∑

k∈Σ(0)

∫ 1

0
(γr(m)) · |g(x)(k)− g(y)(k)| dt

=
∑

k∈Σ(0)

(γr(m)) · |g(x)(k)− g(y)(k)|

= γr(m)
∑

k∈Σ(0)

|g(x)(k)− g(y)(k)|

= γr(m)
∑

k∈(Sx∪Sy)(0)

|g(x)(k)− g(y)(k)|

= γr(m)
∑

k∈(Sx∪Sy)(0)

∣∣∣∣τk(x)
τ̄(x) −

τk(y)
τ̄(y)

∣∣∣∣
= γr(m)

∑
k∈(Sx∪Sy)(0)

∣∣∣∣τk(x)
τ̄(x) −

τk(y)
τ̄(y) + τk(y)

τ̄(x) −
τk(y)
τ̄(x)

∣∣∣∣
≤ γr(m)

∑
k∈(Sx∪Sy)(0)

∣∣∣∣τk(x)
τ̄(x) −

τk(y)
τ̄(x)

∣∣∣∣+ ∣∣∣∣τk(y)
τ̄(x) −

τk(y)
τ̄(y)

∣∣∣∣
γr(m)

∑
k∈(Sx∪Sy)(0)

1
τ̄(x)

(
|τk(x)− τk(y)|+ τk(y)

τ̄(y) |τ̄(x)− τ̄(y)|
)

= γr(m)
τ̄(x)

∑
k∈(Sx∪Sy)(0)

 |τk(x)− τk(y)|︸ ︷︷ ︸
≤d(x,y) by 1-Lipschitzness

+τk(y)
τ̄(y) |τ̄(x)− τ̄(y)|


≤ γr(m)

τ̄(x)
∑

k∈(Sx∪Sy)(0)

(
d(x, y) + τk(y)

τ̄(y) |τ̄(x)− τ̄(y)|
)

= γr(m)
τ̄(x)

∑
k∈(Sx∪Sy)(0)

d(x, y) + τk(y)
τ̄(y)

∣∣∣∣∣∣
∑

l∈(Sx∪Sy)(0)

(τl(x)− τl(y))

∣∣∣∣∣∣


2It is sufficient to only consider paths γp : [0, 1]→ Σ and such that γ̇p = g(y)− g(x).
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≤ γr(m)
τ̄(x)

∑
k∈(Sx∪Sy)(0)

d(x, y) + τk(y)
τ̄(y)

∑
l∈(Sx∪Sy)(0)

|τl(x)− τl(y)|


≤ γr(m)

τ̄(x)
∑

k∈(Sx∪Sy)(0)

d(x, y) + τk(y)
τ̄(y)

∑
l∈(Sx∪Sy)(0)

d(x, y)


≤ γr(m)

τ̄(x) (2 dim(Σ) + 1) (d(x, y) + (2 dim(Σ) + 1)d(x, y))

= γr(m)
τ̄(x) (2 dim(Σ) + 1)(2 dim(Σ) + 2)d(x, y).

We summarize the result of the previous calculation:

dC(g(x), g(y)) ≤ γr(m)
τ̄(x) (2 dim(Σ) + 1)(2 dim(Σ) + 2)d(x, y). (3.3)

Let now Dn be such that x ∈ Dn then Dn ∩Dm 6= ∅ by the previous claim and thus by
point (5) of Lemma 3 we get:

γ−1r(m) ≤ r(n) = τn(x) ≤ τ̄(x). (3.4)

We can now combine (3.3) with (3.4) and get

dC(g(x), g(y)) ≤ γ2(2 dim(Σ) + 1)(2 dim(Σ) + 2)d(x, y).

which shows the claim. �

We have therefore constructed a Lipschitz map g : X → Σ with

Lip(g) = γ2(2 dim(Σ) + 1)(2 dim(Σ) + 2)Cq,

where Cq is the smallest constant satisfying the conditions of quasi-convexity. This is
what we wanted.

For the second statement, let x ∈ {τk > 0} for some k, then g(x)(k) 6= 0 and thus the
simplex containing g(x) must have vk as a vertex. �

Lemma 5 The dimension of Σ is independent of ε and dim(Σ) ≤ 2 dimAN(Z) + 2.

Proof This follows directly from point (4) of Lemma 3: The cover of X by sets {τk > 0}
has multiplicity at most 2 dimAN(Z) + 3. �

For the following discussion we need a short corollary which can be extracted from
Theorem 2.4.2.
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3. Proof of the Main Theorem

Corollary 8 Let n ≥ 0 and Y be a Lipschitz n-connected metric space and Z ⊆ Dn+1 a
non-empty, closed subset of the closed (n+ 1)-ball. Then any Lipschitz map f : Z → Y
can be extended to a Lipschitz map f̄ : Dn+1 → Y .

Proof We know that dimAN(Dn+1) ≤ n + 1 and it follows from Proposition 2 that
dimAN(Dn+1 \ Z) ≤ dimAN(Dn+1). �

Notation 8 Denote the vertex set of a simplex ∆ ⊆ Σ by V(∆) ⊆ Σ. Furthermore
denote the indices by K(∆) ⊆ K(Σ).

Young’s article [You14] contains a few problems which have subsequently been fixed in
[You15]. In the following I proceed with the Lemmas and proofs given in the errata
which replace the original version.

Lemma 6 (Lemma 1 in [You15]) Let X be a Lipschitz n-connected metric space and
let Z ⊆ X be a non-empty closed subset of X. Suppose Xp with p ∈ P are the connected
components of X \ Z and each ∂Xp is Lipschitz n-connected with uniformly bounded
implicit constant. Then Z is Lipschitz n-connected as well.

Proof Let f : Sn → Z be a Lipschitz continuous function.

Claim 3: There exists a Lipschitz extension h : Dn+1 → Z of f with Liph . Lip f .

Proof of Claim 3: By the Lipschitz n-connectivity of X we can extend f to a function
f̄ : Dn+1 → X such that Lip f̄ . Lip f . If f̄(Dn+1) ⊆ Z we have found a suitable h and
we are done. Otherwise, for each p ∈ P let Kp := f̄−1(Xp).

We claim that f̄(∂Kp) ⊆ ∂Xp. Assume for a contradiction that there exists a kp ∈ ∂Kp

such that f̄(kp) ∈ X̊p. Then there exists a open neighbourhood of f̄(kp) contained in
Xp, the pre-image of this set under f̄ is again an open set containing kp which is a
contradiction to the assumption that kp was a boundary point. A similar argument works
for points f̄(kp) /∈ X̄p.

Our aim is to use Corollary 8. We restrict f̄ to ∂Kp to define the functions

hp := f̄
∣∣∣
∂Kp

: ∂Kp → ∂Xp.

Each of these hp, we can extend using the corollary to some h̄p : Kp → ∂Xp satisfying
Lip h̄p . Lip f̄ . By construction we know that

h̄p
∣∣∣
∂Kp
≡ f̄

∣∣∣
∂Kp

.

Finally setting

h(x) :=
{
f̄(x), if f̄(x) ∈ Z
h̄p(x), if f̄(x) ∈ Xp

yields the desired Lipschitz extension h of f and because the implicit constant in
the Lipschitz n-connectedness of the sets ∂Xp is uniformly bounded it follows that
Liph . Lip f . �
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3.2. Proof of the Main Theorem

XpZ

Xp′′

Xp′

Kp

∂Kp

Dn+1

Sn

f̄

f̄−1

Figure 3.4: Illustration of the sets used for the proof of Lemma 6.

This shows the Lipschitz n-connectivity of Z. �

Lemma 7 (Lemma 2 in [You15]) Under the assumptions of the main theorem (The-
orem 2.4.1), there exists a Lipschitz map h : Σ(n+1) → Z with Lipschitz constant
independent of ε and such that d(h(g(z)), z) . ε for all z ∈ Z, where g is the function
that we defined in Lemma 4.

Proof Define a function h : Σ(0) → Z as follows: Let vk ∈ V(Σ) be any vertex. If
Dk ∩ Z 6= ∅ then let h(vk) ∈ Z ∩Dk be some point (pick a choice). Otherwise, define
h(vk) ∈ Z such that d(h(vk), {τk > 0}) ≤ 2d(Z, {τk > 0}).

Claim 4: The function h : Σ(0) → Z is Lipschitz continuous with constant independent
of ε.

Proof of Claim 4: Let vk, v′k ∈ Σ be any two vertices that are connected by an edge
e. Then by Lemma 3 we know that r(k′) . r(k) . r(k′) and therefore r(k′) . l(e).3
Without loss of generality assume that r(k′) ≥ r(k). Then we can use point (1) and (2)

3 l(e) = infγ
∫ 1

0

√
s(γ(t))2 · γ̇(t)2 dt ≥ infγ

∫ 1
0

√
r(k′) · γ̇(t)2 dt = infγ r(k′)

∫ 1
0

∣∣γ̇(t)2
∣∣dt =

r(k′)
∫ 1

0 |vk′ − vk| dt & r(k′)

29



3. Proof of the Main Theorem

from Lemma 3 and calculate

d(h(vk), h(v′k)) ≤ d(h(vk), {τk > 0}) + diam({τk > 0}) + diam({τk′ > 0}) + d({τk′ > 0} , h(vk′))
. d(Z, {τk > 0}) + diam({τk > 0}) + diam({τk′ > 0}) + d({τk′ > 0} , Z)
. d(Z,Dk) + diam({τk > 0}) + diam({τk′ > 0}) + d(Dk′ , Z)
. d(Z,Dk) + diam(Dk) + r(k) + diam(Dk′) + r(k′) + d(Dk′ , Z)
. r(k) + r(k) + r(k) + r(k′) + r(k′) + r(k′)
. r(k′) . l(e)

from which the claim follows. �

By the previous lemma we know that Z is Lipschitz n-connected. Furthermore Σ(0) is a
QC complex. Therefore we can inductively extend h : Σ(0) → Z to a map h : Σ(n+1) → Z,
which by abuse of notation we also call h.

Claim 5: This map satisfies the relation d(h(g(z)), z) . ε for all z ∈ Z.

Proof of Claim 5: Let z ∈ Z be some point. There exists a k such that z ∈ Dk. We use
the triangle inequality and calculate

d(h(g(z)), z) ≤ d(h(g(z)), h(vk)) + d(h(vk), z) ≤ Lip(h) · d(g(z), vk) + d(h(vk), z).

By Lemma 4 we know that g(z) is in the star of vk and also r(k) = ε, therefore
d(g(z), vk) . ε. Because z ∈ Z ∩ Dk we know that h(vk) ∈ Z ∩ Dk, so d(h(vk), z) .
diam(Dk) . r(k) = ε. We conclude

d(h(g(z)), z) . Lip(h) · d(g(z), vk) + d(h(vk), z) . ε. �

Thus we have constructed a Lipschitz map h : Σ(n+1) → Z with the required properties.�

Notation 9 To indicate the particular ε used in the construction of Σ we may write
Σ(ε).

Lemma 8 For any k ∈ J we have Lip(gk) ∼ ε−1, where gk(x) = τk(x)
τ̄(x) is the function

we defined in Lemma 4.

Proof We calculate

Lip(gk) = sup
x,y∈X

d(gk(x), gk(y))
d(x, y) = sup

x,y∈X

|gk(x)− gk(y)|
d(x, y) =

∣∣∣ τk(x)
τ̄(x) −

τk(y)
τ̄(y)

∣∣∣
d(x, y) .

This can be estimated as∣∣∣ τk(x)
τ̄(x) −

τk(y)
τ̄(y)

∣∣∣
d(x, y) ≤

r(k)
τ̄(x)
r(k) = 1

τ̄(x) =

∑
k∈K

τk(x)

−1

∼ ((1 + dim(Σ))ε)−1 ∼ ε−1.
�

30



3.2. Proof of the Main Theorem

X

Z

Σ

α h](α′)

g](α)

α′

X \ Z g](β)

λ

γ

Figure 3.5: Illustration for the construction used in Lemma 9 and in the proof of the main theorem on
page 34.

Remark 7 Note that, we have diam({τk > 0}) ∼ diam(Dk) + r(k) ∼ ε for any k ∈ J .

We now have completed the necessary preparations to start with the proof of the main
theorem. The proof follows almost directly from the following lemma. The construction
and notations used in the lemma and proof are illustrated in Figure 3.5.

Lemma 9 (Lemma 3 in [You15]) Assuming the conditions of the main theorem and
using the functions g and h, which we defined in Lemma 4 and Lemma 7 respectively,
let α ∈ CL

m(Z) be a Lipschitz m-cycle in Z and m ≤ n. Then there exists a cα > 0,
depending on the number of simplices in α and their Lipschitz constants such that for any
ε > 0, there exist a simplicial m-cycle α′ ∈ Cm(Σ(ε)), and two annuli, γ ∈ CL

m+1(Σ(ε))
and λ ∈ CL

m+1(Z) such that

1. ∂γ = g](α)− α′,

2. ∂λ = α− h](α′),

3. mass γ . cαε,

4. massλ . cαε.
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3. Proof of the Main Theorem

Proof Let Lg := supk∈J Lip(gk). From Lemma 8 we know that Lg ∼ ε−1. Because
α lies in Z we know that it is only covered by sets {τk > 0} with k ∈ J . Define
δ∆ := 1

2(dim(Σ)+1)Lg ∼ ε and subdivide the m-simplices of α into roughly δ−m∆ simplices
each with diameter less than δ∆ < 1. We write this subdivision as

∑N
i=1 αi where

αi : ∆m → Z. There exists a constant cα > 0, depending only on the cycle α such that
we can subdivide in a way that N ≤ cαδ

−m
∆ and because this results in a rescaling of

the simplices we have furthermore that diam(αi) ≤ Lip(αi) < δ∆ for each i ∈ {1, . . . , N}.
Here diam(αi) := diam(αi(∆m)).

For each point z ∈ Z define k(z) ∈ K such that gk(z)(z) ≥ gk(z) for all k ∈ K.
Furthermore denote by v(z) := vk(z) the vertex v ∈ Σ with the index k(z). This is a (not
necessarily unique) nearest vertex of g(z) in Σ.

Claim 6: Given an αi : ∆m → Z in the subdivision and denoting the images under αi
of the vertices of ∆m by zi,0, . . . , zi,m ∈ Z, then v(zi,0), . . . , v(zi,m) ∈ Σ are the (not
necessarily distinct) vertices of a simplex in Σ.

Proof of Claim 6: We know that

gk(zi,j)(zi,j)(dim(Σ) + 1) ≥
∑
k∈K

gk(zi,j) = 1

and this implies
gk(zi,j)(zi,j) ≥

1
dim(Σ) + 1 . (3.5)

Furthermore note that we have

diam(αi) ≤ Lip(αi) < δ∆ = 1
2(dim(Σ) + 1)Lg

and therefore
d(z, z′) < 1

2(dim(Σ) + 1)Lg
for any z, z′ ∈ im(αi) ⊂ Z. We can rewrite this as

Lgd(z, z′) < 1
2(dim(Σ) + 1) ≤

1
dim(Σ) + 1 .

Let x ∈ ∆m be any point, then for z := αi(x) we have

1
dim(Σ) + 1 − Lgd(zi,j , z) > 0. (3.6)

We further calculate

gk(zi,j)(zi,j)− Lgd(zi,j , z) ≤ gk(zi,j)(zi,j)− d(gk(zi,j)(zi,j), gk(zi,j)(z)) ≤ gk(zi,j (z)
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and then combining this with (3.5) and (3.6) we get

gk(zi,j)(z) ≥
1

dim(Σ) + 1 − Lgd(zi,j , z) > 0. (3.7)

This implies that gk(zi,j)(z) > 0 for all j ∈ {0, . . . ,m} and therefore {v(zi,0), . . . , v(zi,m)}
must be the vertex set of a simplex in Σ. �

Claim 7: There exists a simplicial cycle α′ ∈ CL
m(Σ) with massα′ . cα.

Proof of Claim 7: Define α′ ∈ CL
m(Σ) to be the simplicial cycle α′ :=

∑
i 〈v(zi,0), . . . , v(zi,m)〉.

Write each simplex in the sum as α′i : ∆n′(i) → Σ. We can approximate the mass of the
simplicial cycle by

massα′ . Nεm . cα

because diamα′i . ε. �

It remains to construct γ and λ. Consider Σ as a subset of ∆K = {p : K → [0, 1] | ‖p‖1 = 1}
which we defined in the proof of Lemma 4. The set of vertices of ∆K is {vk}k∈K . Denote
by ∆m = 〈e0, . . . , em〉 the standard m-simplex. Remember that for the subdivision of α
we wrote α =

∑
i αi where αi : ∆m → Z and write α′ =

∑
i α
′
i where α′i : ∆n′(i) → Σ is

linear such that α′i(ej) = v(zi,j) for the simplicial cycle constructed above.

Let x ∈ ∆m and let z := αi(x) ∈ Z.

Claim 8: g(z) and α′i(x) are both contained in the same simplex of Σ.

Proof of Claim 8: Let s ∈ Σ and define by supp(s) the vertex set of the minimal simplex
containing s. Note that

supp g(z) = {vk | gk(z) > 0}

by the definition of g and Σ as the nerve of the covering. Furthermore we have that

suppα′i(x) =
{
vk(zi,0), . . . , vk(zi,m)

}
by the Claim 6 above. From equation (3.7) it follows that supp(α′i(x)) ⊆ supp(g(z)). �

Claim 9: There exists a γ ∈ CL
m+1(Σ) with ∂γ = g](α)− α′.

Proof of Claim 9: Let ᾱi : ∆m × [0, 1]→ Σ be the homotopy defined by

ᾱi(x, t) := tg(αi(x)) + (1− t)α′i(x).

Note that we can identify ∆m × [0, 1] with ∆m+1 and therefore γ :=
∑
i ᾱi can be viewed

as a Lipschitz chain γ ∈ CL
m+1(Σ) with ∂γ = g](α)− α′. �

Claim 10: mass γ . cαε.
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Proof of Claim 10: By construction of the subdivison of α we know that Lip(αi) . ε,
furthermore we know that massα′ . cα and because α′ is a simplicial cycle with
diam(α′i) . ε we also have Lipα′i . ε. We therefore have that Lip ᾱi . ε and further
that mass γ . Nεm+1. From N . cαε−m together with the above it follows that

mass γ . cαε. �

Claim 11: There exists a λ ∈ CL
m+1(Z) such that ∂λ = α− h](α′) and mass . cαε.

Proof of Claim 11: By Lemma 7 and suppα′i(x) ⊆ supp g(αi(x)) it follows that

d(h ◦ α′i, αi) . ε

and Lip(h ◦ α′i) . ε. Let pi : ∆m × {0, 1} → Z be defined as

pi
∣∣
∆m×1 = h ◦ α′i

and
pi
∣∣
∆m×0 = αi,

then Lip(pi) . ε and we can apply the Lipschitz n-connectivity of Z to extend

pi : ∆m × {0, 1} = ∆m × ∂[0, 1]→ Z

to a map
pi : ∆m+1 = ∆m × [0, 1]→ Z.

Define λ :=
∑
i pi by the previous identification. Then

∂λ = α− h](α′)

and
massλ . Nεm+1 . cαε. �

Proof (Proof of Theorem 2.4.1) Let β ∈ CL
m+1(X) be a chain in X with ∂β = α

and let γ and λ be as given by Lemma 9. Using the deformation theorem (Corollary 4)
approximate g](β) − γ ∈ CL

m+1(Σ(ε)) by a simplicial chain Pg](β)−γ := P (g](β) − γ) ∈
Cm+1(Σ(ε)). We know that ∂Pg](β)−γ = g](α)− g](α) + α′ by the properties of γ given
in Lemma 9. Therefore ∂Pg](β)−γ = α′ ∈ Cm(Σ(ε)). For λ + h](Pg](β)−γ) ∈ CL

m+1, we
calculate

∂(λ+ h](Pg](β)−γ)) = α− h](α′) + h](Pg](β)−γ) = α− h](α′) + h](α′) = α

and furthermore for the mass

mass(λ+ h](Pg](β)−γ)) . cαε+ mass(β − γ) . cαε+ massβ.
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3.2. Proof of the Main Theorem

Thus λ+ h](Pg](β)−γ) is a chain in CL
m+1 with boundary α. Letting ε→ 0 we get

mass(λ+ h](Pg](β)−γ)) . massβ,

which is exactly
FVZ(α) . FVX(α)

as desired. �
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Applications and Appendix
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Chapter 4

Applications of the Theorem

The laws of nature are constructed in such a way
as to make the universe as interesting as possible.

Freeman Dyson

We need the following theorem of Gromov.

Theorem 6 (Gromov [Wen07]) Let X be a CAT(0) space. Then for any Lipschitz
k-cycle α ∈ ZL

k (X) in X the filling volume satisfies

FVk+1
X (α) ≤ C ·mass(α)1+ 1

k .

Where the constant C depends only on k.

Corollary 9 ([You14]) Let X be a CAT(0) and let Z ⊂ X be a non-empty closed subset
of X with the metric given by the restriction of the metric of X and dimAN(X) < ∞,
suppose that either one of the following conditions is true:

• Z is Lipschitz n-connected or,

• X is Lipschitz n-connected, and if Xp, p ∈ P are the connected components of
X \ Z, then the sets Hp = ∂Xp are Lipschitz n-connected with uniformly bounded
implicit constant.

Then for any Lipschitz k-cycle α ∈ ZL
k (Z) in Z with k ≤ n we have the relation

FVk+1
Z (α) ≤ C1 FVk+1

X (α) + C1 ≤ C2 mass(α)1+ 1
k + C2.

Furthermore if δ(k)
Z (x) := sup

{
FVk+1

Z (γ)
∣∣∣ γ ∈ ZL

k (Z), mass(γ) ≤ x
}

denotes the kth-
order Dehn function [BBD09], then

δ
(k)
Z (x) ≤ C2x

1+ 1
k + C2.
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Appendix A

Eilenberg–Steenrod Axioms for Homology

For the things of this world cannot be made
known without a knowledge of mathematics.

Roger Bacon

Definition 16 (Eilenberg–Steenrod Axioms [Bre97]) Let (Hn)n∈Z : (Top,Top)→
Ab be a sequence of functors together with natural transformations ∂ : Hi(X,A) →
Hi−1(A) (where we use the notation Hi(A) := Hi(A, ∅) and so on) such that the following
axioms hold:

1. Homotopy: If f : (X,A) → (Y,B) is homotopic to g : (X,A) → (Y,B), then
f∗ = g∗ : H∗(X,A)→ H∗(Y,B),

2. Exactness: Each topological pair (X,A) together with inclusions i : A ↪→ X and
j : X ↪→ (X,A) induces a long exact sequence in homology

· · · ∂→ Hi(A) i∗→ Hi(X) j∗→ Hi(X,A) ∂→ · · · ,

3. Excision: Given a pair (X,A) and an open set U ⊆ X such that Ū ⊆ Å, then the
inclusion ı : (X \ U,A \ U) ↪→ (X,A) induces an isomorphism

ı∗ : H∗(X \ U,A \ U) ∼→ H∗(X,A),

4. Dimension: For a one point space pt we have Hi(pt) = 0 for all i 6= 0,

5. Additivity: Given a disjoint union X =
∐
αXα of a family of topological spaces

(Xα)α∈A, we have an isomorphism

Hi(X) ≈
⊕
α

Hi(Xα).
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Appendix B

Further Concepts that Are Used in the Text

The whole thing that makes a mathematician’s
life worthwhile is that he gets the grudging
admiration of three or four colleagues.

Donald Knuth

We state some further concepts and basic results that are used throughout the text.

B.1 Additional Versions of the Deformation Theorem
Adapting the notation used by Young the deformation theorem can also be written as
follows.

Theorem 7 (Deformation Theorem (Theorem 2 in [You06])) Let X be a geodesic
metric space, and let (τ, h : τ → X) be a triangulation of X. Then there is a constant
c = c(τ) such that for all Lipschitz k-chains α ∈ CL

k (X) with ∂α ∈ Ck−1(τ) there exist
Pτ (α) ∈ Ck(τ) and Qτ (α) ∈ CL

k+1(X) such that:

1. mass(Pτ (α)) ≤ c ·mass(α),

2. mass(Qτ (α)) ≤ c ·mass(α),

3. ∂Qτ (α) = α− Pτ (α).

For a simplicial complex, we have the following slightly more detailed version from
Gruber.

Theorem 8 (Deformation Theorem (Theorem 2.1 in [Gru14])) Given a simpli-
cial complex Σ there is a constant c > 0 such that for any Lipschitz k-chain α ∈ CL

k (Σ)
there exist a simplicial k-chain P (α) ∈ Ck(Σ), a Lipschitz (k + 1)-chain Q(α) ∈ CL

k+1(Σ)
and a Lipschitz k-chain R(α) ∈ CL

k (Σ) such that
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1. mass(P (α)) ≤ c ·mass(α),

2. mass(Q(α)) ≤ c ·mass(α),

3. mass(R(α)) ≤ c ·mass(∂α),

4. ∂Q(α) = α− P (α)−R(α),

5. ∂R(α) = ∂α− ∂P (α),

6. P (α) and Q(α) are contained in the smallest subcomplex of Σ that contains α,

7. R(α) is contained in the smallest subcomplex of Σ that contains ∂α.

Corollary 10 • If additionally α is a cycle then we have R(α) = 0,

• If ∂α is simplicial, then we also have R(α) = 0.

B.2 Rademacher’s Theorem

Theorem 9 (Rademacher’s Theorem [Fed96]) Let f : Rm → Rn be a Lipschitz
function. Then f is differentiable almost everywhere.

B.3 Metric Differential
A similar result like Rademacher’s Theorem holds in arbitrary metric space using the so
called metric differential.

Theorem 10 ([Kir94]) Let (X, d) be a metric space and let f : Rn → X be a Lipschitz
continuous function. Furthermore let x ∈ Sn−1 be any point. Then the limit

lim
r↓0

d(f(p+ rx), f(p))
r

exists for almost every point p ∈ Rn.

Definition 17 ([Kir94]) We write

MD(f, p)(x) := lim
r↓0

d(f(p+ rx), f(p))
r

whenever the above limit exists. MD(f, p)(·) is called the metric differential of f in
the point p.

Theorem 11 ([Kir94]) Let (X, d) be a metric space and let f : Rn → X be a Lips-
chitz continuous function. Then for almost every point p ∈ Rn the metric differential
MD(f, p)(·) is a seminorm on Rn.
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B.4. Čech Cohomology

Definition 18 ([Kir94]) Let (X, d) be a metric space and let f : Rn → X be a Lipschitz
continuous function. If for a point p ∈ Rn the metric differential MD(f, p)(·) exists, then
define the Jacobian of MD(f, p)(·) as:

J (MD(f, p)) := π
n
2

Γ(n2 + 1)n
(∫

Sn−1
MD(f, p)(x)−n dHn−1(x)

)−1
.

Remark 8 The following references provide more in depth information on the subject:
[Kir94; KM03; Bon14; Gra14; Kar09; Mag10].

B.4 Čech Cohomology

Definition 19 A map between two simplicial complexes is called simplicial map if the
images of the vertices of a simplex always span a simplex.[Mun]

Definition 20 Given a topological space X and an cover U of X by open sets, associate
to it a simplical complex N (U) called the nerve of the cover U . It has vertices vα for each
set Uα ∈ U in the cover and any set of k+ 1 vertices spans a k-simplex if the k+ 1 sets in
the cover corresponding to the vertices have non-empty intersection. Given another cover
V which is a refinement of U (meaning that each Vα ∈ V is contained in some Uα′ ∈ U),
then the associated inclusions induce a simplicial map ı : N (U)→ N (V). Then the Čech
cohomology group H̆i(X,G) is defined as the direct limit lim−→H i(N (U), G). [Hat02]

The idea in this construction is that a fine enough cover will yield an associated simplicial
complex which is a good model of the space X.
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K K := Î t J , page 21

Nε(Z) Nε(Z) := {x ∈ X | d(x, Z) < ε}, page 20

56



Nomenclature

r r(k) =
{
δ · d(Dk, Z), k ∈ Î
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