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ABSTRACT

We investigate the boundary at infinity of Gromov-hyperbolic metric
spaces. The boundary of a given space is unique up to quasi-Möbius
maps. We therefore first investigate which properties remain invariant
under quasi-Möbius maps. In the second part we develop a new
method to study the boundary at infinity by modifying the metric in
such a way that we bring infinitely far points into a closed bounded
space.
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ZUSAMMENFASSUNG

Wir untersuchendenRand imUnendlichen vonGromov-hyperbolischen
metrischen Räumen. Da der Rand bis auf quasi-Möbius Abbildungen
unabhängig von Basispunkt ist, untersuchenwir Eigenschaftenwelche
invariant bleiben unter quasi-Möbius Abbildungen. Im zweiten Teil
entwickeln wir eine neue Methode um den Rand im Unendlichen zu
untersuchen. Dabei wird die Metrik so verändert, dass die Punkte im
unendlichen einen endlichen Abstand zum Basispunkt bekommen.
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NOTATION

frequently used notation

sn𝜅 generalized sine function
cs𝜅 generalized cosine function
CAT(𝜅) Cartan-Aleksandrov-Toponogov-spaces
CBB(𝜅) space with curvature bounded from below
𝑀𝑛

𝜅 the 𝑛-dimensional model space of curvature
𝜅

cr((𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑑) cross-ratio of the four points (𝑥1, 𝑥2, 𝑥3, 𝑥4) in
the metric 𝑑

𝑑𝐻 hyperbolic metric
𝑑𝐸 Euclidean metric
𝑑rad the radial part of the metric 𝑑 with respect to

a base point 𝑜
QM quasi-Möbius
QS quasi-symmetric
QI quasi-isometric
𝑖𝑝 metric inversion at point 𝑝
𝑑𝑝 the metrized form of 𝑖𝑝
∠𝑝(𝑥, 𝑦) the angle between the segments 𝑝𝑥 and 𝑝𝑦
∠̄𝜅

𝑝(𝑥, 𝑦) the angle between the segments 𝑝𝑥 and 𝑝𝑦
in the comparison space 𝑀2

𝜅 with constant
curvature 𝜅
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1
INTRODUCT ION

Damit das Mögliche entsteht, muß immer wieder
das Unmögliche versucht werden.

— Hermann Hesse

The main objective of the thesis is to understand the boundary at
infinity of a Gromov hyperbolic metric space. This is done in the fol-
lowing chapters, where Chapter 3 deals with the properties of spaces
up to quasi-Möbius (QM) equivalence and states a uniformization
theorem for quasi-Möbius spaces which characterizes spaces that are
QM equivalent to a symbolic Cantor set. Chapter 4 develops a method
to study the Gromov boundary by deforming the metric. The prelim-
inary Chapter 2 is a prerequisite to both later chapters and gives a
general overview of all the important theorems and definitions which
are used throughout the thesis.

We give here a short introduction to the subject and state the main
theorems of the thesis.

1 .1 invariant properties of quasi-möbius maps

Given arbitrary metric spaces (𝑋, 𝑑) and (𝑌, 𝑑′), a map 𝑓 ∶ (𝑋, 𝑑) →
(𝑌, 𝑑′) is called quasi-Möbius (QM) if it is a homeomorphism and
there exists a homeomorphism 𝜈 ∶ [0, ∞[→ [0, ∞[, such that for
all quadruples 𝑄 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) of distinct points of 𝑋 and 𝑄′ ∶=
(𝑓 (𝑥1), 𝑓 (𝑥2), 𝑓 (𝑥3), 𝑓 (𝑥4)) the following holds:

cr(𝑄′, 𝑑′) ≤ 𝜈(cr(𝑄, 𝑑)).

Here
cr(𝑄, 𝑑) ∶=

𝑑(𝑥1, 𝑥3)𝑑(𝑥2, 𝑥4)
𝑑(𝑥1, 𝑥4)𝑑(𝑥2, 𝑥3)

1



2 introduction

is the so called cross-ratio. In particular, the cross-ratio of a quadruple
of points under the map 𝑓 changes at most by something bounded by
the control function 𝜈.

Quasi-Möbiusmapswere first introduced in 1985 by Väisälä [Väi84]
in order to study another class of maps called quasi-symmetric (QS)
maps. Quasi-symmetric maps were also first studied by Tukia and
Väisälä [TV80]. A quasi-symmetricmap preserves (up to some control
function) the ratio

𝑑(𝑥1, 𝑥2)
𝑑(𝑥1, 𝑥3)

,

and not just the cross-ratio. It is therefore a stronger property. If one
wants to study extended metrics however - i.e., metrics where one
considers also some point at infinity as part of the metric and the
distance function can take values in [0, ∞] - then quasi-symmetric
maps are in some sense undesirable because they have to keep the
infinitely remote point fixed. Quasi-Möbius maps solve this detail
while sacrificing the ratio in favor of the cross-ratio.

Both QM and QS maps play an important role in metric analy-
sis [Hei01], geometric group theory [DKN18] and the study of self-
similarity [DS97].

In geometric group theory, when taking a finitely generated group 𝐺
with generating set 𝑆, one can form the so called Cayley graph [Cay54]
Cay(𝐺, 𝑆) of 𝐺 by taking 𝐺 as the vertex set and edges between 𝑔 and
𝑔𝑠 for every 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆. One can then associate a metric to
this graph by giving each edge the length 1. The Cayley graph of a
group is independent of the generating set 𝑆 up to quasi-isometry
(roughly onto rough bi-Lipschitz maps) by the Švarc–Milnor lemma
[Šva55; Mil68]. Quasi-isometry is a large scale notion of isometry.
Meaning two spaces are quasi-isometric if they look the same from
far away. Quasi-isometry is usually defined as follows: A map 𝑓 ∶
(𝑋, 𝑑) → (𝑌, 𝑑′) is called a quasi-isometry (QI) if there exist constants
𝜆 ≥ 1, 𝐶0 ≥ 0 and 𝐶1 ≥ 0 such that

1
𝜆

𝑑(𝑥, 𝑦) − 𝐶0 ≤ 𝑑′(𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦) + 𝐶0,
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for all 𝑥, 𝑦 ∈ 𝑋 and for every 𝑦 ∈ 𝑌 there exists some 𝑥 ∈ 𝑋 such that

𝑑(𝑓 (𝑥), 𝑦) ≤ 𝐶1.

The study of quasi-isometries goes back at least to Mostow [Mos68]
who used them in order to proof the so calledMostow rigidity theorem,
which states that two closed connected hyperbolic 𝑛-manifolds (for
𝑛 ≥ 3) are isometric if they are homotopy equivalent [Löh17].

In order to study spaces up to quasi-isometry, one needs to intro-
duce large scale concepts of geometric notions. An important notion
is Gromov hyperbolicity. A geodesic metric space is called Gromov
𝛿-hyperbolic (for some 𝛿 ≥ 0), if in each geodesic triangle, the 𝛿-
neighborhoods of any two sides cover the third side [Gro87].1 Exam-
ples ofGromovhyperbolic spaces are the hyperbolic space, metric trees
and smooth simply connected manifolds with all sectional curvatures
negative and bounded away from zero. Furthermore the fundamen-
tal groups of compact Riemannian manifolds with strictly negative
sectional curvature are hyperbolic (meaning that their Cayley graphs
are hyperbolic).

Quasi-isometries may not always be easy to understand. How-
ever if the space is Gromov hyperbolic then one can look at the Gro-
mov boundary 𝜕∞𝑋 of the space instead, that is the space of equiva-
lence classes of infinite geodesic rays equipped with a specific metric
[Gro87]. In order to define a metric, one introduces the Gromov
product:

(𝑥|𝑦)𝑜 =
1
2

(𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑦)),

which is basically a measure of the distance for how far two geodesic
rays stay close together. Two geodesic rays are then called equivalent
if they stay close together infinitely, i.e., their Gromov product goes
to (𝑥𝑖|𝑦𝑖)𝑜 → ∞ as 𝑖 → ∞. One can extend the Gromov product to the

1 This definition of 𝛿-hyperbolicity with 𝛿-slim triangles is generally credited to Eliyahu
Rips. We will however mostly use Gromov’s definition (introduced in detail in the
preliminaries chapter) which works also in metric spaces which are not geodesic. For
geodesic spaces both definitions are (up to a change of constant) equivalent.
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Gromov boundary and use it to define a metric there. On the bound-
ary one can work with quasi-symmetries instead of quasi-isometries.
In fact quasi-symmetries on the boundary are in one to one correspon-
dence with quasi-isometries in the interior [BS00]. Furthermore a
Gromov hyperbolic group acts on the boundary of its Cayley graph
by quasi-Möbius maps [Pau96; Bow98; MT10].

The study of QM maps is therefore justified by the fact that for a
Gromov hyperbolic metric space (𝑋, 𝑑) any two quasi-metrics on the
boundary 𝜌𝑏(𝛼, 𝛽) ∶= 𝑎−(𝛼|𝛽)𝑏, and 𝜌𝑏′ ∶= 𝑎−(𝛼|𝛽)𝑏′ with different base-
points 𝑏, 𝑏′ ∈ 𝑋 are related by QM maps: id ∶ (𝜕∞𝑋, 𝜌𝑏) → (𝜕∞𝑋, 𝜌𝑏′)
is a QM map. In particular the Gromov boundary up to change in
base point can be characterized QM equivalent metric spaces [BS07].

We are therefore interested which properties apply to all QM equiv-
alent spaces. Many interesting properties have been known to be
invariant under quasi-symmetric maps but QM maps have not been
investigated as strongly. We give a proof that the doubling property
is invariant under QM maps. It has come to our attention later that
this statement has been shown before in a different way. We also give
a proof that the property of uniform disconnectedness is invariant
under QM maps. This result has not been known before.

As an application we can now generalize a uniformization theorem
of David-Semmes to QM spaces which gives a characterization of sym-
bolic Cantor sets. In particular if a QM space is doubling, uniformly
disconnected and uniformly perfect then it is a Cantor set.

In conclusion we get the following main theorems:

Theorem 1 (Invariance of doubling under quasi-Möbius maps). Let
(𝑋, 𝑑) be a doubling space. Let 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) be a quasi-Möbius
homeomorphism. Then (𝑌, 𝑑′) is doubling.

Theorem 2 (Invariance of uniform disconnectedness under quasi-
Möbius maps). Let (𝑋, 𝑑) be a metric uniformly disconnected space and
let 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) be a quasi-Möbius homeomorphism. Then (𝑌, 𝑑′) is
uniformly disconnected.
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Theorem 3. Suppose that (𝑀, 𝑑) is a complete, doubling, uniformly perfect
and uniformly disconnected metric space. Then𝑀 is quasi-Möbius equivalent
to a Cantor set.

The proof of both invariance theorems follows a similar plan. First
we realize that QM maps can be assembled from a quasi-symmetric
map and up to two metric inversions. Because the results are already
known for quasi-symmetric maps, it remains to show that they hold
for the metric inversion as well. In case of the doubling property we
give a direct proof constructing a covering. For uniform disconnected-
ness we give a proof by contradiction. Both proofs require to look at
the infinitely remote points as a special point and handling this case
separately.

1 .2 metrizing the gromov closure

In Chapter 4we develop amethod to investigate theGromov boundary
by changing the metric in a specific way. This is a joint work based on
an unpublished article [LS07] by Urs Lang and Viktor Schroeder.

Before we state the theorems we give the example which motivated
this method. In classical geometry the hyperbolic space is usually
constructed by taking an open unit ball in the euclidean space (ℝ𝑛, ‖⋅‖)
and then letting the metric on this ball be:

𝑑𝐻(𝑥, 𝑦) = arccosh(1 +
2‖𝑥 − 𝑦‖2

(1 − ‖𝑥‖2)(1 − ‖𝑦‖2)
) .

This operation is reversible, and one can recover the euclideanmetric
from this space by calculating

‖𝑥 − 𝑦‖ =
sinh(𝑑𝐻(𝑥, 𝑦)/2)

cosh(𝑑𝐻(𝑥, 0)/2) cosh(𝑑𝐻(𝑦, 0)/2)
.

It is now reasonable to ask what happens if the same reverse con-
struction is applied to a space with is reasonably close to hyperbolic.
For example to a Gromov hyperbolic space as discussed previously,
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or a so called CAT(𝜅)-space. This is a geodesic space in which tri-
angles are slimmer than corresponding triangles with the same side
lengths in the simply connected 2-dimensional Riemannian mani-
fold of constant sectional curvature 𝜅. Examples of CAT(𝜅) spaces
are simply-connected Riemannian manifolds of sectional curvature
bounded above by 𝜅. For 𝜅 < 0 we find that the same construction
(with generalized trigonometric functions) still works and lets us
study the boundary at infinity by applying the above formula, after
which the boundary at infinity becomes the regular boundary with
distance 1 from the base point. We can therefore complete the metric
to study both the interior and the Gromov boundary. For 𝜅 > 0 we
find a similar result for CBB(𝜅) spaces. Those are defined similarly
to CAT(𝜅) spaces, but here we require the triangles to be fatter than
the corresponding triangles in the comparison space. For Gromov 𝛿-
hyperbolic spaces we do not directly get a metric from the construction
but only a semi-metric. However we can apply a standard construction
which lets us recover the triangle inequality and therefore metricize
this semi-metric. If 𝛿 < ln(2) then the newmetric is bi-Lipschitz equiv-
alent to the semi-metric. For 𝛿 > ln(2) this is no longer true as we
show in a counter-example. For general metric spaces if we apply the
method we still get a space which is topologically equivalent to the
space we stared with. Furthermore points on the Gromov boundary
are in one to one correspondence with points that have distance 1 from
some base point in our new space.

We summarize the main results in simplified (𝜅 = −1) form here:

Theorem 4. Let 𝑋 = (𝑋, 𝑑) be a complete CAT(𝜅)-space for 𝜅 < 0. Fix
𝑜 ∈ 𝑋. Then

1. The function given by

𝜌𝑜(𝑥, 𝑦) ∶=
sinh(𝑑(𝑥, 𝑦)/2)

cosh(𝑑(𝑥, 𝑜)/2) cosh(𝑑(𝑦, 𝑜)/2)

is a metric on 𝑋.
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2. We can extend 𝜌𝑜 to a metric on �̄� = 𝑋 ∪ 𝜕∞𝑋 and the following
relation holds for 𝜉 , 𝜂 ∈ 𝜕∞𝑋:

𝜌𝑜(𝜉 , 𝜂) = 2 exp(−(𝜉 |𝜂)𝑜).

3. If 𝛾 ∶ (𝑋, 𝑑) → (𝑋, 𝑑) is an isometry, then 𝛾 ∶ (𝑋, 𝜌𝑜) → (𝑋, 𝜌𝑜) is a
Möbius-map (Meaning it preserves the cross-ratio exactly).

Theorem5. Let (𝑋, 𝑑) be a complete intrinsic CBB(1)-space withdiam(𝑋) <
𝜋, then

𝜌𝑜(𝑥, 𝑦) ∶=
sin(𝑑(𝑥, 𝑦)/2)

cos(𝑑(𝑥, 𝑜)/2) cos(𝑑(𝑦, 𝑜)/2)
is a metric.

We can generalize the result further to Gromov-hyperbolic spaces
and get:

Theorem 6. Let (𝑋, 𝑑) be a 𝛿-hyperbolic metric space with 0 ≤ 𝛿 < ln(2).
Then

𝜌𝑜(𝑥, 𝑦) ∶=
sinh(𝑑(𝑥, 𝑦)/2)

cosh(𝑑(𝑥, 𝑜)/2) cosh(𝑑(𝑦, 𝑜)/2)
is a semi-metric. Taking

̄𝜌𝑜(𝑥, 𝑦) ∶= inf
𝑛

∑
𝑖=0

𝜌𝑜(𝑥𝑖, 𝑥𝑖+1),

where the infimum runs over all finite chains of the form 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 is
a metric and ̄𝜌𝑜 ≤ 𝜌𝑜 ≤ 𝜆 ̄𝜌𝑜 for some 𝜆 ≥ 1. The metric can be completed and
the Cauchy completion (�̄� = 𝑋 ∪ 𝜕𝑋, ̄𝜌) coincides as a set with the Gromov
boundary. Furthermore we have 𝜔 ∈ 𝜕∞𝑋 if and only if ̄𝜌𝑜(𝑜, 𝜔) = 1. For
𝛿 > ln(2), there are spaces for which a 𝜆 as above does not exist, i.e., for
which 𝜌𝑜 and ̄𝜌)𝑜 are not bi-Lipschitz to each other.

In a general metric space we can still extract some topological infor-
mation from the construction:

Proposition 1. For a general metric space the topologies of (𝑋, 𝑑) and (𝑋, ̄𝜌𝑜)
are equivalent.
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Theorem 7. Let (𝑋, 𝑑) be a metric space with base point 𝑜 ∈ 𝑋 and let
𝑥 ∈ 𝑋 ∪𝜕𝑋 be some point. Then for the completed metric ̄𝜌𝑜 on �̄� = 𝑋 ∪𝜕𝑋
the following holds:

̄𝜌(𝑜, 𝑥) = 1 ⟺ 𝑥 ∈ 𝜕𝑋.



2
PREL IM INAR IES

The most merciful thing in the world, I think, is
the inability of the human mind to correlate all its
contents.

— H. P. Lovecraft

In this chapter we will introduce the main concepts and notions
used in the rest of the thesis.

2.1 metric spaces

In the followingwe use the convention that we call maps 𝑑 ∶ 𝑋×𝑋 → ℝ
distance functions.

Definition 1. A set 𝑋 together with a map 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞[ is called
metric space if the following conditions hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, (identity of indiscernibles)

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), (symmetry)

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). (triangle inequality)

The function 𝑑 is called the metric.

Quite often one works with a distance function that do not satisfy
all the above conditions. In the following we introduce the most
commonly used generalizedmetrics. Quite often the terminology used
is not completely standardized across the literature [DD14; Väi05].

9
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2.1 .1 Generalized Metrics

If we relax the identity of indiscernibles we get a pseudo-metric space
when only asking for one part of the implication and a meta-metric
space in the other implication direction. Meta-metrics were first intro-
duced by Väisälä [Väi05].

Definition 2. A set 𝑋 together with a map 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞[ is called
pseudo-metric space if the following conditions hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) = 0 ⟸ 𝑥 = 𝑦,

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), (symmetry)

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). (triangle inequality)

The function 𝑑 is called pseudo-metric.

Definition 3. A set 𝑋 together with a map 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞[ is called
meta-metric space if the following conditions hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) = 0 ⟹ 𝑥 = 𝑦,

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), (symmetry)

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). (triangle inequality)

The function 𝑑 is called meta-metric.

If we generalize the triangle inequality, we get a quasi-metric.

Definition 4. A set 𝑋 together with a map 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞[ is called
(K)-quasi-metric space if there exists a 𝐾 ≥ 0 such that the following
conditions hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, (identity of indiscernibles)

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), (symmetry)
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3. 𝑑(𝑥, 𝑧) ≤ 𝐾max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)}.
(K-quasi-inequality / K-inframetric inequality)

The function 𝑑 is called (K)-quasi-metric.

Remark 1. Note that from 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≤ 2max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)} it
follows that every metric space is also a 2-quasi-metric space. A 1-quasi-
metric is called ultrametric. Every ultrametric is automatically a metric
becausemax{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)} ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

If we completely remove the triangle call the resulting distance
function a semi-metric.

Definition 5. A set 𝑋 together with a map 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞[ is called
semi-metric space if the following conditions hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, (identity of indiscernibles)

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). (symmetry)

The function 𝑑 is called semi-metric.

2.1 .2 Extended Metrics

Sometimes it is useful to consider a map between two metric spaces
with at most one extra point in each space representing the infinitely
far away point.

Definition 6. Let 𝑋 be a set with cardinality at least 3. We call a map
𝑑 ∶ 𝑋 ×𝑋 → [0, ∞] an extended metric on 𝑋 if there exists a set Ω(𝑑) ⊂ 𝑋
with cardinality 0 or 1 and furthermore all of the following requirements are
satisfied:

1. 𝑑|𝑋⧵Ω(𝑑)×𝑋⧵Ω(𝑑) ∶ 𝑋 ⧵ Ω(𝑑) × 𝑋 ⧵ Ω(𝑑) → [0, ∞[ is a metric;

2. 𝑑(𝑥, 𝜔) = 𝑑(𝜔, 𝑥) = ∞ for all 𝑥 ∈ 𝑋 ⧵ Ω(𝑑) and 𝜔 ∈ Ω(𝑑);

3. 𝑑(𝜔, 𝜔) = 0 for 𝜔 ∈ Ω(𝑑).

If Ω(𝑑) is non empty we call 𝜔 ∈ Ω(𝑑) the infinitely remote point of
𝑋. By abuse of notation we may write ∞ for the point 𝜔.
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2.1 .3 Properties of Metrics

In order to study the notion of curvature it is helpful to introduce the
notion of paths and path lengths on a metric space. This in turn allows
us to define what a geodesic metric space is [Bus15; Bus18; Gro+99].

Definition 7. Let (𝑋, 𝑑) be a metric space and 𝑥, 𝑦 ∈ 𝑋. A path from 𝑥 to
𝑦 is a continuous map

𝛾 ∶ [0, 1] → 𝑋

such that 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. The length of a path is defined as follows:

𝑙(𝛾) ∶= sup
⎧{
⎨{⎩

𝑛
∑
𝑖=1

𝑑(𝛾(𝑡𝑖), 𝛾(𝑡𝑖−1)) | 𝑛 ∈ ℕ, 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 1
⎫}
⎬}⎭

.

A path is called rectifiable if it has finite length. The induced intrinsic
metric of (𝑋, 𝑑) is the function 𝑑I ∶ 𝑋 × 𝑋 → [0, ∞] defined between two
points 𝑥, 𝑦 ∈ 𝑋 as the infimum of the lengths of all paths from 𝑥 to 𝑦, and
𝑑I(𝑥, 𝑦) = ∞ if there is no finite path between 𝑥 and 𝑦. If 𝑑(𝑥, 𝑦) = 𝑑I(𝑥, 𝑦)
for all 𝑥, 𝑦 ∈ 𝑋, then the space is called length space and the metric 𝑑 is
called intrinsic.

Definition 8. An intrinsic metric space (𝑋, 𝑑) where for every two points
𝑥, 𝑦 ∈ 𝑋, there exists a path 𝛾 with 𝑙(𝛾) = 𝑑(𝑥, 𝑦) is called geodesic metric
space and 𝛾 is called a geodesic between 𝑥 and 𝑦.

Example 1. If we remove any point from the Euclidean plane (with the
Euclidean metric) the resulting space is no longer a geodesic space but it is
still an length metric space.

Definition 9. A map 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) is called metric map or short
map if it does not expand distances between points. In mathematical terms
for all points 𝑥, 𝑦 ∈ 𝑋 it holds that:

𝑑′(𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑑(𝑥, 𝑦).
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Definition 10. Given a metric space (𝑋, 𝑑) an infinite sequence of points
(𝑥𝑖)𝑖 in 𝑋 is called Cauchy sequence if for every 𝜖 > 0 there exists an
integer 𝑁 > 0 such that for all 𝑖, 𝑗 > 𝑁, the distance satisfies

𝑑(𝑥𝑖, 𝑥𝑗) < 𝜖.

A metric space (𝑋, 𝑑) is called complete if every Cauchy sequence in 𝑋
converges to an element of 𝑋.

We state the followingwell known construction in order to introduce
some notation:

Proposition 2 (Completion of a Metric Space). Let (𝑋, 𝑑) be a metric
space. Then we can form the completion �̄� = 𝑋 ∪ 𝜕𝑋 of 𝑋 with respect to
the metric 𝑑 by applying the following procedure: Let Cau(𝑋, 𝑑) be the set of
Cauchy sequences in 𝑋. We construct a pseudo-metric on Cau(𝑋, 𝑑) which
by abuse of notation we also call 𝑑 and which we define as follows:

𝑑(𝑥, 𝑦) = lim
𝑖→∞

𝑑(𝑥𝑖, 𝑦𝑖).

We now define an equivalence relation 𝑅 on Cau(𝑋, 𝑑) by 𝑥 ∼ 𝑦 ⟺
𝑑(𝑥, 𝑦) = 0. �̄� is then the quotient Cau(𝑋, 𝑑)/𝑅 and 𝑑 is a metric on �̄�. The
space 𝑋 is isometrically embedded by sending points to constant sequences
𝑥 ↦ 𝑥𝑖 = 𝑥. We write 𝜕𝑋 to denote �̄� ⧵ 𝑋.



14 preliminaries

2.2 notions of curvature

Here (𝑀2
𝜅, ̄𝑑) denotes the complete, simply connected, Riemannian

2-manifold of constant sectional curvature1 𝜅. The construction of
model spaces is in more detail discussed in Section 4.2.

2.2.1 CAT(𝜅) Spaces

A space in which triangles are “slimmer” than the corresponding
model triangles in a standard space of constant curvature 𝜅 is called
CAT(𝜅). The terminology CAT(𝜅) goes back to Gromov [Gro87] and
is an acronym for Élie Cartan, Aleksandr Danilovich Aleksandrov and
Victor Andreevich Toponogov.

Definition 11. A geodesic space (𝑋, 𝑑) is said to satisfy the CAT(𝜅) in-
equality (i.e., 𝑋 is a CAT(𝜅)-space) if, for all geodesic triangles Δ in 𝑋,

𝑑(𝑝, 𝑞) ≤ ̄𝑑( ̄𝑝, ̄𝑞)

for all comparison points ̄𝑝, ̄𝑞 ∈ Δ̄ ⊆ 𝑀2
𝜅.

Example 2.

• The Euclidean space is CAT(0).

• The hyperbolic space is CAT(−1).

• The unit sphere is CAT(1).

• Any CAT(𝜅) space is also CAT(𝜅′) for all 𝜅′ > 𝜅.

• Simply-connected Riemannianmanifolds of sectional curvature bounded
above by 𝜅 are CAT(𝜅) spaces.

1 In 2 dimensions this is the same as Gaussian curvature
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2.2.2 CBB(𝜅) Spaces

The opposite condition that triangles are “fatter” than the model tri-
angles is called CBB (curvature bounded from below). Often those
spaces are also called spaces with curvature ≥ 𝜅 in the sense of Alexandrov
[Top64; BGP92]. Those spaces were first introduced by Alexandrov
in the 1950’.

Definition 12. Let (𝑋, 𝑑) be a metric space, 𝑝, 𝑥, 𝑦 ∈ 𝑋 and 𝜅 > 0. Given
the triangle 𝑝, 𝑥, 𝑦 and the comparison triangle ̄𝑝, ̄𝑥, ̄𝑦 in the 2 dimensional
model space (𝑀2

𝜅, ̄𝑑) with constant curvature 𝜅, denote by ∡̄𝜅
𝑝(𝑥, 𝑦) the angle

at ̄𝑝 in the comparison triangle.
The space (𝑋, 𝑑) is called CBB(𝜅) if it is complete intrinsic and for all

𝑝, 𝑥, 𝑦, 𝑧 ∈ 𝑋 it holds that

∡̄𝜅
𝑝(𝑥, 𝑦) + ∡̄𝜅

𝑝(𝑦, 𝑧) + ∡̄𝜅
𝑝(𝑧, 𝑥) ≤ 2𝜋.

We explicitly do not consider the following spaces to be CBB: circles of
length greater than 2𝜋

√𝜅 , line segments of length greater than 𝜋
√𝜅 , the half-line

ℝ+, and the line ℝ.

Proposition 3 ([LP15; BBI01]). A geodesic metric space (𝑋, 𝑑) is CBB(𝜅)
if and only if, for all geodesic triangles Δ in 𝑋,

𝑑(𝑝, 𝑞) ≥ ̄𝑑( ̄𝑝, ̄𝑞)

for all comparison points ̄𝑝, ̄𝑞 ∈ Δ̄ ⊆ 𝑀2
𝜅.

Further equivalent definitions can be found in [AKP19].

Example 3.

• Riemannian manifolds without boundary or with locally convex bound-
ary whose sectional curvatures not less than 𝜅 [BGP92].

• Hilbert spaces are CBB(0)[BGP92].

• Given twoCBB(𝜅) spaces with 𝜅 ≤ 0, then their product is CBB(𝜅)[BBI01].
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• Any CBB(𝜅) space is also CBB(𝜅′) for all 𝜅′ < 𝜅.

An important result for metric spaces is the so called Alexandrov
Lemma, which states:

Proposition 4 (Alexandrov’s lemma [BH99; AKP19]). Let (𝑀2
𝜅, ̄𝑑) be

one of the comparison spaces as above and let 𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑀2
𝜅 be distinct

points with

̄𝑑(𝑜, 𝑥) + ̄𝑑(𝑥, 𝑦) + ̄𝑑(𝑦, 𝑧) + ̄𝑑(𝑧, 𝑜) <
⎧{{
⎨{{⎩

2𝜋/√𝜅, 𝜅 > 0

∞, 𝜅 ≤ 0

and such that the geodesic ray through [𝑜𝑦] crosses the segment [𝑥𝑧] and
∡𝑦(𝑜, 𝑥)+∡𝑦(𝑧, 𝑜) ≥ 𝜋. Furthermore let 𝑜′, 𝑥′, 𝑧′ ∈ 𝑀2

𝜅 such that ̄𝑑(𝑜, 𝑥) =
̄𝑑(𝑜′, 𝑥′), ̄𝑑(𝑜, 𝑧) = ̄𝑑(𝑜′, 𝑧′) and

̄𝑑(𝑥′, 𝑧′) = ̄𝑑(𝑥, 𝑦) + ̄𝑑(𝑦, 𝑧) <
⎧{{
⎨{{⎩

𝜋/√𝜅, 𝜅 > 0

∞, 𝜅 ≤ 0
.

Geometrically the triangle (𝑜′, 𝑥′, 𝑦′) is a deformation of the first triangle
(𝑜, 𝑥, 𝑧) such that the two sides [𝑜𝑥] and [𝑜𝑧] are pushed apart and the geodesic
segment [𝑥′𝑧′] now “contains” 𝑦. This is made clear as follows, let 𝑦′ be the
point on [𝑥′𝑧′] with ̄𝑑(𝑥, 𝑦) = ̄𝑑(𝑥′, 𝑦′) (and therefore ̄𝑑(𝑦, 𝑧) = ̄𝑑(𝑦′, 𝑧′)).
Then

̄𝑑(𝑜, 𝑦) ≤ ̄𝑑(𝑜′, 𝑦′).

2.2.3 𝛿-Hyperbolic Metric Spaces

In order to study groups, Gromov realized that the large scale ge-
ometry of negatively curved spaces can be characterized by a metric
inequality [Gro87].

Definition 13 (Gromov product). Let (𝑋, 𝑑) be a metric space. Then for
points 𝑥, 𝑦, 𝑜 ∈ 𝑋 the expression given by

(𝑥|𝑦)𝑜 ∶=
1
2

(𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑦)) ,

is called the Gromov product of 𝑥 and 𝑦 with respect to the base point 𝑜.
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Definition 14 ((Gromov) 𝛿-hyperbolicity). Given 𝛿 ≥ 0, a metric space
(𝑋, 𝑑) is called (Gromov) 𝛿-hyperbolic if

(𝑥|𝑦)𝑜 ≥ min{(𝑥|𝑧)𝑜, (𝑦|𝑧)𝑜} − 𝛿

for all 𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑋. Or equivalently

𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑧) ≤ max{𝑑(𝑥, 𝑦) + 𝑑(𝑧, 𝑜), 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑜)} + 2𝛿

for all 𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑋. A metric space (𝑋, 𝑑) is called (Gromov) hyperbolic
if there exists a 𝛿 ≥ 0 such that 𝑋 is 𝛿-hyperbolic.

Gromov hyperbolicity is a large scale property of a metric space. In
particular it can not detect local properties of the space.

Example 4.

• Every metric space of bounded diameter is hyperbolic.

• The hyperbolic plane ℍ2 is ln(2)-hyperbolic [NŠ16].

• Metric trees and real trees are 0-hyperbolic.

• For 𝜅 < 0, every CAT(𝜅)-space is hyperbolic.

• The Euclidean plane is not hyperbolic.
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2.3 large scale geometry

2.3.1 Quasi-Isometries

Recall that a map between metric spaces is called bi-Lipschitz if it
preserves distances up to some multiplicative constant. This means
distances can be stretched or squeezed but not by too much. Formally
we have the following:

Definition 15. A map 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) between two metric spaces is
called bi-Lipschitz if there exists a constant 𝜆 ≥ 1 such that for all 𝑥, 𝑥′ ∈ 𝑋

1
𝜆

𝑑(𝑥, 𝑥′) ≤ 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜆𝑑(𝑥, 𝑥′)

is satisfied.

Gromov hyperbolicity being a large scale property means it is not af-
fected by a scaling of themetric by amultiplicative or additive constant.
This allows us to define maps which keep the Gromov hyperbolicity
intact but are strictly weaker than classical isometries. One needs
a definition of a map which is roughly bi-Lipschitz in order to be
compatible with the large scale geometry of metric spaces.

Definition 16 (Quasi-Isometry). A map 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) between
two metric spaces is called quasi-isometric if there exist constants 𝜆 ≥ 1
and 𝐶0 ≥ 0 such that for all 𝑥, 𝑥′ ∈ 𝑋 the following holds:

1
𝜆

𝑑(𝑥, 𝑥′) − 𝐶0 ≤ 𝑑′(𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜆𝑑(𝑥, 𝑥′) + 𝐶0.

If the map is additionally roughly onto, meaning there exists a constant
𝐶1 ≥ 0 such that for every 𝑦 ∈ 𝑌 there exists a 𝑥 ∈ 𝑋 with

𝑑′(𝑓 (𝑥), 𝑦) ≤ 𝐶1,

then 𝑓 is called a quasi-isometry. Two spaces are called quasi-isometric
or quasi-isometrically equivalent if there exists a quasi-isometry between
them.
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Example 5.

• Every two metric spaces of bounded diameter are quasi-isometric.

• The Cayley graph of the group ℤ2 is quasi-isometric to the euclidean
plane ℝ2.

We usually follow the convention to label maps which change the
metric up to an additive constant by “roughly-”.

The following result is central to geometric group theory and also
establishes the importance of quasi-isometries:

Proposition 5 (Švarc–Milnor Lemma [Šva55; Mil68]). Let 𝑋 be a length
space. If 𝐺 acts properly and cocompactly by isometries on 𝑋, then 𝐺 is
finitely generated, and for any choice of base point 𝑥0 ∈ 𝑋, the map

𝑔 ↦ 𝑔 ⋅ 𝑥0

is a quasi-isometry.

Definition 17. The Cayley graph Cay(𝐺, 𝑆) of a finitely generated group
𝐺 with generating set 𝑆 is defined as the metric graph with vertices 𝐺 and
edges of length 1 between every 𝑔 and 𝑔𝑠 for all 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆.

In particular it is easy to see that Cayley graphs for a groups 𝐺 with
generating sets 𝑆, 𝑆′ are quasi-isometric.
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2.4 the boundary at infinity

For the sake of completeness, in this section we sketch the main def-
initions and theorems necessary to explain the boundary at infinity.
For a full treatment see [Gro87; Ham91; Bou96; BH99; BS07].

2.4.1 The Boundary at Infinity of Hyperbolic Spaces

Let (𝑋, 𝑑) be a 𝛿-hyperbolic metric space and 𝑜 ∈ 𝑋 a base point. We
will describe the boundary as an equivalence class of rays.

Definition 18 ((Gromov) boundary at infinity). A sequence of points
{𝑥𝑖} ⊂ 𝑋 converges to infinity if

lim
𝑖,𝑗→∞

(𝑥𝑖|𝑥𝑗)𝑜 = ∞.

Two sequences {𝑥𝑖} and {𝑦𝑖} that converge to infinity are equivalent if

lim
𝑖→∞

(𝑥𝑖|𝑦𝑖)𝑜 = ∞.

The boundary at infinity 𝜕∞𝑋 of 𝑋 is defined as the set of equivalence
classes of sequences converging to infinity.

2.4.2 Quasi-Metrics on the Boundary at Infinity of Hyperbolic Spaces

In order to equip the boundary at infinity with ametric, one first needs
to extend the Gromov product to the boundary at infinity. One has to
be careful in doing this, to make sure the resulting extension is well
defined. In a second step one can then define a quasi-metric on the
boundary. For suitable parameters one finally derives a metric from
this quasi-metric.

Definition 19. Let (𝑋, 𝑑) be a 𝛿-hyperbolic space and 𝜕∞𝑋 its boundary at
infinity. For two equivalence classes 𝜉, 𝛾 ∈ 𝜕∞𝑋 of sequences converging to
infinity we can define their Gromov product by

(𝜉 |𝛾)𝑜 = inf lim inf
𝑖→∞

(𝑥𝑖|𝑦𝑖)𝑜,
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where the infimum2 is taken over all sequences {𝑥𝑖} ∈ 𝜉 and {𝑦𝑖} ∈ 𝛾.

Remark 2 (Exercise 3.18 in [BH99] and [MT10]). In case that 𝑋 is a
CAT(𝜅)-space (for any 𝜅), the Gromov product can be extended to infinity
by simply setting:

(lim 𝑥𝑖| lim 𝑦𝑗)𝑜 ∶= lim inf
𝑖,𝑗→∞

(𝑥𝑖|𝑦𝑗)𝑜.

Proposition 6 ([BS07]). Given a 𝛿-hyperbolic space (𝑋, 𝑑), a base point
𝑜 ∈ 𝑋 and a fixed 𝑎 > 1, then

𝜌(𝜉 , 𝛾) ∶= 𝑎−(𝜉|𝛾)𝑜,

is a 𝑎𝛿-quasi-metric on 𝜕∞.

Remark 3. If (𝑋, 𝑑) is a proper CAT(𝜅)-space (for 𝜅 < 0), then 𝜌(𝜉 , 𝛾) ∶=
𝑎−(𝜉|𝛾)𝑜 is a metric on 𝜕∞𝑋 for any 𝑎 ∈]1, 𝑒√−𝜅] and any base point 𝑜 ∈ 𝑋
[Bou96].

For 𝑎𝛿 ≤ 2 it is possible to apply a chain construction to get a metric
out of the quasi-metric. In particular one can always construct the
boundary in a way that it is metrizable.

Definition 20. A metric 𝑑 on 𝜕∞𝑋 is called visual metric if there exists a
base point 𝑜 ∈ 𝑋, 𝑎 > 1 and positive constants 𝑐1, 𝑐2 such that

𝑐1𝑎−(𝜉|𝛾)𝑜 ≤ 𝑑(𝜉 , 𝛾) ≤ 𝑐2𝑎−(𝜉|𝛾)𝑜

for all 𝜉 , 𝛾 ∈ 𝜕∞𝑋.

Remark 4. This is the same as saying 𝑎−(⋅|⋅)𝑜 is bi-Lipschitz to some metric
on 𝜕∞𝑋.

Proposition 7. Let 𝑋 be a 𝛿-hyperbolic space and let 𝑜 ∈ 𝑋 be a base point.
Then there exists a 𝑎0 > 0 such that for every 𝑎 ∈]1, 𝑎0], there exists a metric
𝑑 on 𝜕∞𝑋 which is bi-Lipschitz to 𝑎−(⋅|⋅)𝑜 [Ghy+90].

2 In some literature sup lim inf some variation of this is used.
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Proposition 8 (Application of Frink’s Chain Construction[Fri37]). Let
(𝑋, 𝑑) be a 𝛿-hyperbolic space, fix 𝑎 > 0 and a base point 𝑜 ∈ 𝑋 and let
𝜌 ∶ 𝜕∞𝑋 × 𝜕∞𝑋 → ℝ be given by 𝜌(𝜉 , 𝛾) = 𝑎(𝜉 |𝛾)𝑜. Then take

𝑑(𝜉 , 𝛾) ∶= inf
𝑛−1
∑
𝑖=0

𝜌(𝜉𝑖, 𝜉𝑖+1),

where the infimum is taken over all finite sequences 𝜉 = 𝜉0, … , 𝜉𝑛 = 𝛾 in
𝜕∞𝑋. Then 𝑑 is a metric and 𝑑 is bi-Lipschitz to 𝜌.

Example 6.

• The Gromov boundary of the real line consists of exactly two points.

• The Gromov boundary of the hyperbolic 𝑛-space is homeomorphic to
the (𝑛 − 1)-sphere.

• The Gromov boundary of (the Cayley graph of) a freely generated free
group of rank at least 2 is a Cantor set.

2.4.3 Gromov Products Based at Infinity

We used a fixed base point 𝑜 ∈ 𝑋 in order to construct the boundary
at infinity. But it is also possible to give a construction of the Gromov
product on 𝑋 with specifying a base point at infinity. In order to have
a notion of the distance from a point at infinity 𝜔 to a point in 𝑋 we can
use Busemann functions. Busemann functions were first introduced in
[Bus55]. Applying Busemann functions to base the Gromov product
at infinity, we follow the treatment in [BS07].

Definition 21. Given an extended metric space (𝑋, 𝑑), a base point 𝑜 ∈ 𝑋
and 𝜔 ∈ Ω(𝑋) we define:

𝐵𝜔,𝑜(𝑥) ∶= lim
𝑖

(𝑑(𝑥, 𝜔𝑖) − 𝑑(𝜔𝑖, 𝑜)),

where 𝜔𝑖 → 𝜔 (𝑖 → ∞) is some sequence in 𝑋.
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Given a 𝛿-hyperbolic space (𝑋, 𝑑) with 𝑜 ∈ 𝑋 and 𝜔 ∈ 𝜕∞𝑋 we further-
more define

𝑏𝜔(𝑥, 𝑦) ∶= (𝜔|𝑦)𝑥 − (𝜔|𝑥)𝑦

as well as
𝑏𝜔,𝑜(⋅) ∶= 𝑏𝜔(⋅, 𝑜).

Definition 22 (Gromov product based at Busemann function). Let 𝑋
be a 𝛿-hyperbolic space. Given 𝑥, 𝑦, 𝑜 ∈ 𝑋 and 𝜔 ∈ 𝜕∞𝑋 let

(𝑥|𝑦)𝜔,𝑜 ∶=
1
2

(𝐵𝜔,𝑜(𝑥) + 𝐵𝜔,𝑜(𝑦) − 𝑑(𝑥, 𝑦)) ,

where 𝐵𝜔,𝑜(𝑥) ∶= lim𝑖→∞(𝑑(𝑥, 𝜔𝑖)−𝑑(𝜔𝑖, 𝑜)) is the limit of some sequence
𝜔𝑖 → 𝜔 (𝑖 → ∞). We can extend this to points on the boundary by setting:

(𝜉 |𝛾)𝜔,𝑜 ∶= (𝜉 |𝛾)𝑜 − (𝜔|𝜉)𝑜 − (𝜔|𝛾)𝑜.

Remark 5. For a CAT(𝜅) space with 𝜅 < 0, this is always well defined
because all involved limits exist and are unique. For a 𝛿-hyperbolic space one
should replace the function 𝐵 in the above definition with the function 𝑏𝜔,𝑜
which is defined through the Gromov product and therefore also well defined.
Note that

(𝑥|𝑦)𝜔,𝑜 ∶=
1
2

(𝐵𝜔,𝑜(𝑥) + 𝐵𝜔,𝑜(𝑦) − 𝑑(𝑥, 𝑦)) = (𝑥|𝑦)𝑜 −(𝜔|𝑥)𝑜 −(𝜔|𝑦)𝑜.

2.4.4 Quasi Maps on the Boundary at Infinity

We now introduce two important types of maps which appear natu-
rally on the boundary at infinity.

2.4.4.1 Quasi-Symmetric Maps

A map which preserves the ratio is called quasi-symmetric. We pre-
cisely define those maps as follows. This definition goes back to Tukia
and Väisälä [TV80] who first introduced them.
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Definition 23. We call a homeomorphism 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) 𝜈-quasi-
symmetric if for all pairwise distinct 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 we have

𝑑′(𝑓 (𝑥1), 𝑓 (𝑥2))
𝑑′(𝑓 (𝑥1), 𝑓 (𝑥3))

≤ 𝜈(
𝑑(𝑥1, 𝑥2)
𝑑(𝑥1, 𝑥3)

).

A homeomorphism 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) is called quasi-symmetric if it
is 𝜈-quasi-symmetric for some homeomorphism 𝜈 ∶ [0, ∞[→ [0, ∞[. It is
called symmetric if for all pairwise distinct 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 we have

𝑑′(𝑓 (𝑥1), 𝑓 (𝑥2))
𝑑′(𝑓 (𝑥1), 𝑓 (𝑥3))

=
𝑑(𝑥1, 𝑥2)
𝑑(𝑥1, 𝑥3)

.

Here (𝑋, 𝑑) and (𝑌, 𝑑′) are either metric or extended metric spaces. In
case of an extended metric with 𝜔 ∈ Ω(𝑑) we take the following conventions:

• 𝑑(𝑥1,𝜔)
𝑑(𝑥1,𝑥3) = ∞,

• 𝑑(𝑥1,𝑥2)
𝑑(𝑥1,𝜔) = 0,

• 𝑑(𝜔,𝑥2)
𝑑(𝜔,𝑥3) = 1.

2.4.4.2 Quasi-Möbius Maps

Quasi-Möbius maps were introduced by Väisälä in 1984[Väi84]. We
follow the treatment given there.

Definition 24. A map 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) is quasi-Möbius if it is a
homeomorphism and there exists a homeomorphism 𝜈 ∶ [0, ∞[→ [0, ∞[,
such that for all quadruples 𝑄 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) of distinct points of 𝑋 and
𝑄′ ∶= (𝑓 (𝑥1), 𝑓 (𝑥2), 𝑓 (𝑥3), 𝑓 (𝑥4)),

cr(𝑄′, 𝑑′) ≤ 𝜈(cr(𝑄, 𝑑))

holds. Here the cross-ratio cr is given by

cr(𝑄, 𝑑) ∶=
𝑑(𝑥1, 𝑥3)𝑑(𝑥2, 𝑥4)
𝑑(𝑥1, 𝑥4)𝑑(𝑥2, 𝑥3)

.
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(𝑋, 𝑑) and (𝑌, 𝑑′) are either metric or extended metric spaces. In case of
an extended metric with 𝜔 the point at infinity the cross ratio is defined as:

cr((𝑥1, 𝑥2, 𝑥3, 𝜔), 𝑑) ∶=
𝑑(𝑥1, 𝑥3)
𝑑(𝑥2, 𝑥3)

.

The other cases are defined analogously. A map with cr(𝑄′, 𝑑′) = cr(𝑄, 𝑑)
for all quadruples of distinct points is called Möbius. Whenever the metric
is clear from the context we might write cr(𝑄) for cr(𝑄, 𝑑).

Note that in particular all quasi-symmetric maps are also quasi-
Möbius.

A quasi-Möbius map 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) which keeps the infinitely
remote point 𝜔 ∈ Ω(𝑑) fixed (𝑓 (𝜔) ∈ Ω(𝑑′)), has to preserve the ratio
as well, and therefore is quasi-symmetric.

One motivation in the study of quasi-Möbius maps is that they give
a useful tool while studying quasi-symmetric maps. In particular it is
a more natural map when working with extended metrics because it
does not require the infinitely remote point to be fixed.

Quite often one also encounters so called snowflake maps, which
have been given this name in [BS00].

Definition 25 (SnowflakeMap). A bijection 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) between
two metric spaces is called snowflake map if there exist constants 𝜆 ≥ 1
and 𝛼 > 0 such that for all 𝑥, 𝑥′ ∈ 𝑋 the following holds:

1
𝜆

𝑑(𝑥, 𝑥′)𝛼 ≤ 𝑑′(𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜆𝑑(𝑥, 𝑥′)𝛼.

2.4.4.3 The Quasi-Möbius Structure on the Boundary at Infinity

The justification of studying those maps comes from the following
results.

Proposition 9 (5.2.8 in [BS07]). Let (𝑋, 𝑑) be a 𝛿-hyperbolic space. Then
there exists a constant 𝑞 ≥ 1 which depends only on 𝛿, such that for any two



26 preliminaries

quasi-metrics 𝜌𝑏 ∶= 𝑎−(⋅|⋅)𝑏, 𝜌𝑏′ ∶= 𝑎−(⋅|⋅)𝑏′ on 𝜕∞𝑋 with the same parameter
𝑎 > 1, and base points 𝑏, 𝑏′ ∈ 𝑋 ∪ {∞}, the identity map

id ∶ (𝜕∞𝑋, 𝜌𝑏) → (𝜕∞𝑋, 𝜌𝑏′)

is quasi-Möbius.3

Proposition 10 (5.3.2 in [BS07]). Let (𝑋, 𝑑) be a boundary continuous
hyperbolic space. Then for any two quasi-metrics 𝜌𝑏 ∶= 𝑎−(⋅|⋅)𝑏, 𝜌𝑏′ ∶=
𝑎−(⋅|⋅)𝑏′ on 𝜕∞𝑋 with the same parameter 𝑎 > 0 and base points 𝑏, 𝑏′ ∈
𝑋 ∪ {∞}, the identity map

id ∶ (𝜕∞𝑋, 𝜌𝑏) → (𝜕∞𝑋, 𝜌𝑏′)

is Möbius.

For hyperbolic groups, the induced action of the group on the
boundary at infinity of its Cayley graph is by quasi-Möbius maps.

Proposition 11 ([Bow98; Pau96; MT10]). Let 𝐺 be a hyperbolic group
(that is 𝐺 is finitely generated, and the Cayley graph of 𝐺 is hyperbolic). Then
the induced action of 𝐺 on 𝜕∞𝐺 is by uniformly quasi-Möbius maps (i.e., all
maps have the same control function), and it is cocompact on the space of
distinct triples of points.

Here cocompactness on triplesmeans that there exists some constant
𝐶 > 0 such that every triple (ℎ1, ℎ2, ℎ3) of distinct points in 𝜕∞𝐺 can
be mapped by some group element to a triple with pairwise distances
greater than 𝐶.

Example 7. If 𝐺 is freely generated free group, then the Cayley graph of 𝐺
is a tree, in particular it is hyperbolic. The boundary at infinity 𝜕∞𝐺 of the
Cayley graph is a Cantor set.

Another important result establishes a one-to-one correspondence
between quasi-isometricmaps of Gromov hyperbolic spaces and quasi-
symmetric maps on their boundaries.

3 In fact it is (1, 𝑞)-power-quasi-Möbius, which means that the control function of the
map has the form: 𝜈(𝑡) = 𝑞𝑡.
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Proposition 12 (Theorem 3.2.13 in [MT10]). Let (𝑋, 𝑑) and (𝑌, 𝑑′) be
Gromov hyperbolic spaces with uniform perfect Gromov boundaries 𝜕∞𝑋 and
𝜕∞𝑌. Then each quasi-isometry 𝐹 ∶ 𝑋 → 𝑌 induces a quasi-symmetric map
𝜕∞𝐹 ∶ 𝜕∞𝑋 → 𝜕∞𝑌 of the boundaries. Conversely, each quasi-symmetric
map 𝑓 ∶ 𝜕∞𝑋 → 𝜕∞𝑌 can be extended to a quasi-isometry 𝐹 ∶ 𝑋 → 𝑌 such
that 𝐹|𝜕𝑋 = 𝑓.

Remark 6. There are further correspondences [BS00; Jor10] for maps 𝑓 ∶
(𝑋, 𝑑) → (𝑌, 𝑑′) on visual Gromov hyperbolic spaces. We list them without
going into the precise details of the definitions, as they are not used further in
the thesis. We then have the following correspondences of maps 𝑓 ∶ 𝑋 → 𝑌
and 𝜕∞𝑓 ∶ 𝜕∞𝑋 → 𝜕∞𝑌:

1. 𝑓 is quasi-isometry ↔ 𝜕∞𝑓 is QS map with control function 𝜈(𝑡) =
⎧{{
⎨{{⎩

𝜆′𝑡1/𝛼, 0 < 𝑡 < 1,

𝜆′𝑡𝛼, 1 ≤ 𝑡.

2. 𝑓 is rough similarity ↔ 𝜕∞𝑓 is snowflake map.

3. 𝑓 is rough isometry ↔ 𝜕∞𝑓 is bi-Lipschitz map.

4. 𝑓 is power quasi-isometry ↔ 𝜕∞𝑓 is power quasi-Möbius.
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2.4.5 Metric Inversions

Let (𝑋, 𝑑) be an extended metric space and fix a point 𝑝 ∈ 𝑋. Further-
more let

𝑖𝑝(𝑥, 𝑦) ∶=
𝑑(𝑥, 𝑦)

𝑑(𝑥, 𝑝)𝑑(𝑦, 𝑝)
.

When 𝜔 ∈ Ω(𝑑), then 𝑖𝑝(𝑥, 𝜔) ∶= 1
𝑑(𝑥,𝑝) . This defines an extended

quasi-metric on 𝑋. Applying the same chain construction as in Propo-
sition 8:

𝑑𝑝(𝑥, 𝑦) ∶= inf
⎧{
⎨{⎩

𝑘
∑
𝑖=1

𝑖𝑝(𝑥𝑖, 𝑥𝑖−1)
∣∣∣∣
𝑥 = 𝑥0, … , 𝑥𝑘 = 𝑦 ∈ 𝑋 ⧵ {𝑝}

⎫}
⎬}⎭

,

results in a metric.

Definition 26. This construction is called the metric inversion. When
it is clear from the context we indicate the quasi-metric resulting from the
inversion at the point 𝑝 of the metric 𝑑 by 𝑖𝑝 and its metrization by 𝑑𝑝.

The metric inversion satisfies the following equation:
1
4

𝑖𝑝(𝑥, 𝑦) ≤ 𝑑𝑝(𝑥, 𝑦) ≤ 𝑖𝑝(𝑥, 𝑦) ≤
1

𝑑(𝑥, 𝑝)
+

1
𝑑(𝑦, 𝑝)

.

In particular (𝑋 ⧵ {𝑝}, 𝑑𝑝) is a metric space. Furthermore the identity
id ∶ (𝑋 ⧵ {𝑝}, 𝑑) → (𝑋 ⧵ {𝑝}, 𝑑𝑝) is a quasi-Möbius map [BK02; BHX08].

Remark 7. It is easy to see that the map which sends the (extended) metric to
its inversion ((𝑋, 𝑑) → (𝑋, 𝑑𝑝), 𝑥 ↦ 𝑥) is a quasi-Möbius map. Calculating
the cross-ratio we get:

𝑑𝑝(𝑥1, 𝑥3)𝑑𝑝(𝑥2, 𝑥4)
𝑑𝑝(𝑥1, 𝑥4)𝑑𝑝(𝑥2, 𝑥3)

≤ 8
𝑖𝑝(𝑥1, 𝑥3)𝑖𝑝(𝑥2, 𝑥4)
𝑖𝑝(𝑥1, 𝑥4)𝑖𝑝(𝑥2, 𝑥3)

= 8
𝑑(𝑥1, 𝑥3)𝑑(𝑥2, 𝑥4)
𝑑(𝑥1, 𝑥4)𝑑(𝑥2, 𝑥3)

.

2.4.5.1 Ptolemaic Spaces

Definition 27 ([FS12]). An extended metric space (𝑋, 𝑑) is called Ptolemy
space, if for all quadruples of points 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 the Ptolemy inequality

𝑑(𝑥, 𝑧)𝑑(𝑦, 𝑤) ≤ 𝑑(𝑥, 𝑦)𝑑(𝑧, 𝑤) + 𝑑(𝑥, 𝑤)𝑑(𝑦, 𝑧),
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holds.

Remark 8. A metric space (𝑋, 𝑑) is Ptolemy if and only if for any 𝑝 ∈ 𝑋,
the metric inversion at the point 𝑝 satisfies 𝑖𝑝 = 𝑑𝑝.

Proposition 13 ([FS11]). Every CAT(0)-space satisfies the Ptolemy in-
equality.

2.4.5.2 Spherification

There is a similar construction possible which is often called spherifi-
cation and defined as follows for an extended metric space:

𝑠𝑝(𝑥, 𝑦) ∶=
𝑑(𝑥, 𝑦)

(1 + 𝑑(𝑥, 𝑝))(1 + 𝑑(𝑦, 𝑝))
,

with
𝑠𝑝(𝑥, 𝜔) ∶=

1
1 + 𝑑(𝑥, 𝑝)

,

for 𝜔 ∈ Ω(𝑑). Whereas the metric inversion sends the point 𝑝 to
infinity, the spherification transforms the space into a bounded space
where all points have at most distance 1 from 𝑝. The function 𝑠𝑝 can
be metrized in the same way as in the case of the metric inversion
[BHX08]. We write ̂𝑑𝑝 for the metrized form. The following holds:

1
4

𝑠𝑝(𝑥, 𝑦) ≤ ̂𝑑𝑝(𝑥, 𝑦) ≤ 𝑠𝑝(𝑥, 𝑦) ≤
1

1 + 𝑑(𝑥, 𝑝)
+

1
1 + 𝑑(𝑦, 𝑝)

.

In particular a map sending the (extended) metric 𝑑 to ̂𝑑𝑝 while keep-
ing points fixed is a quasi-Möbius map.
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2.4.6 Quasi-Symmetric Invariants

In order to study metric spaces one needs to define properties that
help differentiate spaces from each other. The following properties
are well know quasi-symmetric invariants of metric spaces.

2.4.6.1 Doubling Property

Definition 28. We call a metric space doubling with constant 𝐷 if every
ball of finite radius can be covered by at most 𝐷 balls of half the radius.

Example 8.

• The Euclidean space of any dimension as well as arbitrary subsets of it
are doubling.

• The Heisenberg group with the Carnot metric is doubling.

2.4.6.2 Uniform Disconnectedness

Definition 29. For 𝜃 < 1 we call a sequence of (at least 3 distinct) points
(𝑥0, 𝑥1, … , 𝑥𝑛) in a metric space (𝑋, 𝑑) a 𝜃-chain if

𝑑(𝑥𝑖, 𝑥𝑖+1) ≤ 𝜃𝑑(𝑥0, 𝑥𝑛)

holds for all 𝑖 ∈ {0, 1, … , 𝑛 − 1}. A metric space is called uniformly discon-
nected with constant 𝜃 if it contains no 𝜃-chains.4 A metric space (𝑋, 𝑑) is
called uniformly disconnected if there exists a 𝜃 < 0 such that (𝑋, 𝑑) is
uniformly disconnected with constant 𝜃.

Uniform disconnectedness is a scale-invariant version of total dis-
connectedness.

Example 9.

• The Cantor set is uniformly disconnected.

4 And therefore also no 𝜃′-chains for any 𝜃′ ≤ 𝜃.
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• The set { 1
𝑛 | 𝑛 = 1, 2, …} ⊂ ℝ is not uniformly disconnected.

Remark 9. A metric space (𝑋, 𝑑) is uniformly disconnected if and only if
there exists an ultra-metric 𝑑′ on 𝑋 which is bi-Lipschitz to 𝑑 [DS97].

2.4.6.3 Uniform Perfectness

Definition 30. For 𝐶 > 0, a metric space (𝑋, 𝑑) is called 𝐶-uniformly
perfect if for all points 𝑥 ∈ 𝑋 and radii 0 < 𝑟 < diam(𝑋) the annulus
𝐵(𝑥, 𝑟) ⧵ 𝐵(𝑥, 𝐶𝑟) is non-empty. A metric space is called uniformly perfect
if there exists a 𝐶 > 0 such that the space is 𝐶-uniformly perfect.

Example 10.

• Every connected metric space is uniformly perfect.

• The Cantor set is uniformly perfect.

• Every Ahlfors regular space is uniformly perfect.

2.4.6.4 Invariance under Quasi-Symmetric Maps

The properties of doubling, uniformly perfectness and uniformly dis-
connectedness are quasi-symmetric invariants.

Proposition 14 (Theorem 1.3.4 in [MT10]). Let 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) be
a quasi-symmetric map onto another metric space. Then the following hold:

1. If 𝑋 is doubling, then 𝑌 is doubling,

2. If 𝑋 is uniformly perfect, then 𝑌 is uniformly perfect,

3. If 𝑋 is uniformly disconnected, then 𝑌 is uniformly disconnected.





3
SOME INVAR IANT PROPERT IE S OF QUAS I -MÖB IUS
MAPS

The truth may be puzzling. It may take some work
to grapple with. It may be counterintuitive. It
may contradict deeply held prejudices. It may not
be consonant with what we desperately want to be
true. But our preferences do not determine what’s
true.

— Carl Sagan

The following part has been published in [Hee17].

3.1 introduction

Let (𝑋, 𝑑) be a metric space. Recall that: 𝑋 is doubling if there exists a
constant 𝐷 > 0, such that every ball of finite radius can be covered by
at most 𝐷 balls of half the radius. 𝑋 is called uniformly disconnected if
there exists a constant 𝜃 < 1, such that 𝑋 contains no 𝜃-chain, i.e., a
sequence of (at least 3 distinct) points (𝑥0, 𝑥1, … , 𝑥𝑛) such that

𝑑(𝑥𝑖, 𝑥𝑖+1) ≤ 𝜃𝑑(𝑥0, 𝑥𝑛).

The aim of this chapter is to prove the following two theorems:

Theorem 8 (Invariance of doubling under quasi-Möbius maps). Let
(𝑋, 𝑑) be a doubling space. Let 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) be a quasi-Möbius
homeomorphism. Then (𝑌, 𝑑′) is doubling.

Theorem 9 (Invariance of uniform disconnectedness under quasi-
Möbius maps). Let (𝑋, 𝑑) be a metric uniformly disconnected space and
let 𝑓 ∶ (𝑋, 𝑑) → (𝑌, 𝑑′) be a quasi-Möbius homeomorphism. Then (𝑌, 𝑑′) is
uniformly disconnected.

33
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The results are related to results of Lang-Schlichenmaier [LS05]
and Xie [Xie08] who proved that quasi-symmetric maps respectively
quasi-Möbius maps preserve the Nagata dimension of metric spaces.
The present work has been inspired by the article of Xie [Xie08] and
the work of Väisälä [Väi84]. We note that a space is doubling if and
only if it has finite Assouad dimension [MT10]. However the Assouad
dimension is not a quasi-symmetric (and therefore also not a quasi-
Möbius) invariant [Tys+01].

We would like to note that we have been informed that Theorem 8
is a direct consequence of a published result of Li-Shanmugalingam
[LS15].

It is well known that uniform disconnectedness is invariant under
quasi-symmetric maps [MT10; DS97]. However its behavior under
quasi-Möbius maps has not been studied before.

The proofs of both results use the fact that quasi-Möbius maps
can be factorized into a quasi-symmetric and some number of metric
inversions. Because we already know that the results hold for quasi-
symmetric maps, one only needs to show that the properties stay
invariant under the metric inversion.

The related property of uniform perfectness has already been shown
to be invariant under the metric inversion in [Mey09]. It is therefore
also invariant under quasi-Möbius maps.

In Section A.1 we prove a slight generalization of Theorem 8 and
Theorem 9 for 𝐾-quasi-metric spaces.
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3.2 invariance of doubling property

3.2.1 Preparations for the Proof

For the proof we need the following proposition of Xie and a result of
Väisälä which we cite verbatim.

Proposition 15 (Proposition 3.6 in [Xie08]). Let 𝑓 ∶ (𝑋1, 𝑑1) → (𝑋2, 𝑑2)
be a quasi-Möbius homeomorphism. Then 𝑓 can be written as 𝑓 = 𝑓 −1

2 ∘ 𝑓 ′ ∘ 𝑓1,
where 𝑓 ′ is a quasi-symmetric map, and 𝑓𝑖 for 𝑖 ∈ {1, 2} is either a metric
inversion or the identity map on the metric space (𝑋𝑖, 𝑑𝑖).

Remark 10. As a map between sets, 𝑓1 is the identity on 𝑋1, 𝑓2 the identity
on 𝑋2 and 𝑓 ′ = 𝑓. But from a metric point of view this partitions the map
into two QM parts and a QS part.

Note that while we used the result as stated in [Xie08], a factor-
ization theorem already appears in [Väi84]. The result from [Väi84]
requires an intermediate Banach space to apply the inversion however.

Proposition 16 (Theorem 3.10 in [Väi84]). Let (𝑋, 𝑑) be an unbounded
metric space and let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-Möbius map. Then 𝑓 is quasi-
symmetric if and only if 𝑓 (𝑥) → ∞ as 𝑥 → ∞. If 𝑋 is any metric space
and if 𝑓 ∶ 𝑋 ∪ {∞} → 𝑌 ∪ {∞} is quasi-Möbius with 𝑓 (∞) = ∞, then the
restriction 𝑓|𝑋 of 𝑓 to 𝑋 is quasi-symmetric.

Remark 11. Let (𝑋, 𝑑) be an unbounded space. Then we can build the one-
point completion with respect to the infinitely remote point �̄� ∶= 𝑋 ∪ {∞}
together with an extended metric ̄𝑑. Let ̄𝑑(𝑥, 𝑦) ∶= 𝑑(𝑥, 𝑦) and ̄𝑑(∞, 𝑥) ∶=

̄𝑑(𝑥, ∞) = ∞ for all 𝑥, 𝑦 ∈ 𝑋. Furthermore let ̄𝑑(∞, ∞) = 0. Then
clearly (𝑋, 𝑑) is doubling if and only if (�̄�, ̄𝑑) is doubling. It then follows
from [LS98] that the completion also has a doubling measure. Then Propo-
sition 3.2 and Proposition 4.2 from [LS15] directly imply the following
theorem:

Theorem 10. Let (𝑋, 𝑑) be an metric doubling space with doubling constant
D, where 𝑑 is an extended metric [BS07] and denote by ∞ ∈ 𝑋 the infinitely
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remote point in (𝑋, 𝑑). Furthermore let 𝑝 ∈ 𝑋 with 𝑝 ≠ ∞ and let 𝑖𝑝 be
given by

𝑖𝑝(𝑥, 𝑦) ∶=
𝑑(𝑥, 𝑦)

𝑑(𝑝, 𝑥) 𝑑(𝑝, 𝑦)
,

for all 𝑥, 𝑦 ∈ 𝑋 ⧵ {∞} and

𝑖𝑝(∞, 𝑥) ∶= 𝑖𝑝(𝑥, ∞) ∶=
1

𝑑(𝑝, 𝑥)
.

Apply the chain construction to form a new extended metric1 from 𝑖𝑝:

𝑑𝑝(𝑥, 𝑦) ∶= inf
⎧{
⎨{⎩

𝑘
∑
𝑖=1

𝑖𝑝(𝑥𝑖, 𝑥𝑖−1)
∣∣∣∣
𝑥 = 𝑥0, … , 𝑥𝑘 = 𝑦 ∈ 𝑋 ⧵ {𝑝}

⎫}
⎬}⎭

.

Then (𝑋, 𝑑𝑝) is doubling with constant at most 𝐷10 + 1.

Remark 12. Note that if in addition 𝑑 is Ptolemaic, then 𝑖𝑝 = 𝑑𝑝 and in
particular (𝑋, 𝑑𝑝) is doubling with constant at most 𝐷8 + 1.

Before we were informed of the Li-Shanmugalingam result cited
above we worked out a direct proof of the invariance of the doubling
property under inversion. This proof is given here.

outline of proof. The main idea of the proof is the following.
We assume (𝑋, 𝑑) is doubling and use this to construct a cover of a
ball 𝐵′

𝑟(𝑥0) in the metric inversion of the space. The trick here is to
take 𝐵′

1
2 𝑟

(∞) as the first ball in the cover. This ensures that while

approximating distances in (𝑋, 𝑑) we have some fixed upper bounds
that we can work with. The remaining points of the ball we can cover
by some covering by the doubling property of (𝑋, 𝑑). If we apply
this multiple times we ensure that the covering balls in (𝑋, 𝑑𝑝) all
have diameter smaller than 1

2𝑟. Because this works quantitatively
independent of the choice of radii and starting point 𝑥0 we find a
doubling constant.

1 Note that in the new metric 𝑝 is the infinitely remote point and ∞ has finite distance
to all points except to 𝑝.
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Proof of Theorem 10. If (𝑋, 𝑑) is bounded, consider the space (�̄�, ̄𝑑),
with �̄� ∶= 𝑋∪{∞} and ̄𝑑(𝑥, 𝑦) ∶= 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and ̄𝑑(𝑥, ∞) ∶=
∞. (�̄�, ̄𝑑) is doubling. Furthermore if (�̄�, ̄𝑑𝑝) is doubling, then so is
(𝑋, 𝑑𝑝). We therefore only need to show the theorem for unbounded
𝑋.

We have the following relation for all 𝑥, 𝑦 ∈ 𝑋 ⧵ {𝑝} [BHX08]:

1
4

𝑖𝑝(𝑥, 𝑦) ≤ 𝑑𝑝(𝑥, 𝑦) ≤ 𝑖𝑝(𝑥, 𝑦) ≤
1

𝑑(𝑥, 𝑝)
+

1
𝑑(𝑦, 𝑝)

.

Let 𝑥0 ∈ 𝑋⧵{𝑝} and 𝑟 > 0. Let 𝐵′ ∶= 𝐵′
𝑟(𝑥0) ∶= {𝑥 ∈ 𝑋 | 𝑑𝑝(𝑥0, 𝑥) ≤ 𝑟}

be the ball of radius 𝑟 in the space (𝑋, 𝑑𝑝). We consider the following
two cases

1. If 𝐵′ ∩𝐵′
1
2 𝑟

(∞) ≠ ∅, then let 𝐴′ ∶= 𝐵′
𝑟(𝑥0)⧵𝐵′

1
2 𝑟

(∞). Take 𝑦0 ∈ 𝐴′.

For any two points 𝑥, 𝑦 ∈ 𝐴′ we have by definition of the metric
𝑑𝑝 and the above relation that

𝑖𝑝(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝑑(𝑝, 𝑥) 𝑑(𝑝, 𝑦)
≤ 4𝑑𝑝(𝑥, 𝑦) ≤ 8𝑟,

and 1
𝑑(𝑦,𝑝) = 𝑖𝑝(∞, 𝑦) ≥ 𝑑𝑝(∞, 𝑦) > 1

2𝑟. From this it follows that

𝑑(𝑥, 𝑦) ≤ 8𝑟𝑑(𝑝, 𝑥)𝑑(𝑝, 𝑦) ≤
32
𝑟

.

In particular we know that 𝐴′ ⊆ 𝐵 32
𝑟

(𝑦0) ∶= {𝑥 ∈ 𝑋 | 𝑑(𝑦0, 𝑥) ≤
32
𝑟 }. By the assumption we furthermore have for all 𝑥 ∈ 𝐵′ that

𝑑𝑝(𝑥, ∞) ≤ 2𝑟 +
1
2

𝑟 =
5
2

𝑟,

and therefore also
1

𝑑(𝑝, 𝑥)
≤

5
2

𝑟,

from which it follows that

𝑑(𝑝, 𝑥) ≥
2
5𝑟

.
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The space (𝑋, 𝑑) is doubling andwe can find 𝐷𝑁 balls 𝑏𝑖 of radius
32
𝑟 2−𝑁 with center points 𝑥𝑖 covering 𝐵 32

𝑟
(𝑦0). Let ̃𝑏𝑖 ∶= 𝑏𝑖 ∩ 𝐴′

then we have for all 𝑥, 𝑦 ∈ ̃𝑏𝑖:

𝑑𝑝(𝑥, 𝑦) ≤ 𝑖𝑝(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝑑(𝑝, 𝑥) 𝑑(𝑝, 𝑦)
≤

64
𝑟 2−𝑁

2
5𝑟

2
5𝑟

=
64 ⋅ 52 ⋅ 𝑟2

22 2𝑁 𝑟
=

400
2𝑁 𝑟.

In particular for 𝑁 ∶= 10 we know that we have constructed a
cover of 𝐵′ ⊆ 𝐴′ ∪ 𝐵′

1
2 𝑟

(∞) by 𝐷10 + 1 balls of radius 1
2𝑟.

2. In case that 𝐵′ ∩ 𝐵′
1
2 𝑟

(∞) = ∅, we know that 𝑑𝑝(𝑥0, ∞) > 𝑟 and

also 𝑑𝑝(𝐵′, ∞) ∶= inf𝑥∈𝐵′ 𝑑𝑝(𝑥, ∞) ≥ 1
2𝑟. For all 𝑦 ∈ 𝐵′ we have

𝑖𝑝(𝑥0, 𝑦) =
𝑑(𝑥0, 𝑦)

𝑑(𝑝, 𝑥0) 𝑑(𝑝, 𝑦)
≤ 4𝑑𝑝(𝑥0, 𝑦) ≤ 4𝑟,

from which it follows that

𝑑(𝑥0, 𝑦) ≤ 4𝑟𝑑(𝑝, 𝑥0)𝑑(𝑝, 𝑦) ≤
4𝑟

𝑑𝑝(∞, 𝑥0) 𝑑𝑝(∞, 𝑦)
≤

4𝑟
𝑑𝑝(∞, 𝐵′)2 .

We therefore have 𝐵′ ⊆ 𝐵 4𝑟

𝑑𝑝(∞,𝐵′)2
(𝑥0) and by the doubling prop-

erty of (𝑋, 𝑑) we can cover by 𝐷𝑁 balls 𝑏𝑖 of radius
4𝑟

𝑑𝑝(∞,𝐵′)2 2−𝑁

with center points 𝑥𝑖. Let ̃𝑏𝑖 ∶= 𝑏𝑖 ∩ 𝐵′, then we have for any two
𝑥, 𝑦 ∈ ̃𝑏𝑖:

𝑑𝑝(𝑥, 𝑦) ≤ 𝑖𝑝(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝑑(𝑝, 𝑥)𝑑(𝑝, 𝑦)

≤

8𝑟
𝑑𝑝(∞,𝐵′)2 2−𝑁

𝑑(𝑝, 𝑥) 𝑑(𝑝, 𝑦)

= 2−𝑁+4 𝑑𝑝(∞, 𝑥) 𝑑𝑝(∞, 𝑦)
𝑑𝑝(∞, 𝐵′)2 𝑟.
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Furthermore we have

𝑑𝑝(𝑥, ∞) ≤ 𝑑𝑝(𝑥0, 𝑥)+𝑑𝑝(𝑥0, ∞) ≤ 𝑟+𝑑𝑝(𝐵′, ∞)+𝑟 ≤ 5𝑑𝑝(𝐵′, ∞).

In conclusion we get that

2−𝑁+4 𝑑𝑝(∞, 𝑥) 𝑑𝑝(∞, 𝑦)
𝑑𝑝(∞, 𝐵′)2 ≤ 2−𝑁+4 52𝑑𝑝(∞, 𝐵′)2

𝑑𝑝(∞, 𝐵′)2 =
8 ⋅ 52

2𝑁 .

It therefore follows that if we take 𝑁 ∶= 9, then we have a cover-
ing of 𝐵′ by 𝐷9 balls of radius 1

2𝑟.

3 .2.2 Proof of the Invariance of Doubling under quasi-Möbius Maps (The-
orem 8)

Proof of Theorem 8. It remains to show the theorem for (𝑋, 𝑑) being a
doubling metric space, 𝑓 ∶ (𝑋, 𝑑) → (𝑋, 𝑑′) a metric inversion and we
have the following cases to check:

1. (𝑋, 𝑑) unbounded, (𝑋, 𝑑′) bounded;

2. (𝑋, 𝑑) and (𝑋, 𝑑′) both unbounded but with different points at
infinity.

Case 2 follows directly from Theorem 10. In the situation of 1, 𝑑′ is
a metric inversion 𝑑𝑝 where 𝑝 is an isolated point in 𝑋. That is there
exists a 𝜖 > 0 such that 𝑑(𝑝, 𝑥) > 𝜖 for all 𝑥 ∈ 𝑋 ⧵ {𝑝}. The proof of
Theorem 10 still holds.
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3.3 invariance of uniform disconnectedness

The proof of Theorem9will againmake use of some of the propositions
from the previous sections.

outline of proof. Similar to the proof of the doubling property,
the infinitely remote point plays a special role in the proof. We use
the fact that it has finite distance in one space but not the other. We
show that if one space has a chain, then the other space must have
a chain as well. And we construct such a chain directly by taking a
detour over the inversion point 𝑝.

In the following let (𝑋, 𝑑) be a metric space, 𝑝 ∈ 𝑋 and 𝜃 ≤ 1
32 . We

assume that (𝑋, 𝑑𝑝) is not 𝜃-uniformly disconnected, in particular there
is some 𝜃-chain (𝑥0, 𝑥1, … , 𝑥𝑛) in (𝑋⧵{𝑝}, 𝑑𝑝). We keep this notation for
the rest of this section. In addition we introduce the following notation
for convenience: Let 𝑟𝑖 ∶= 𝑑(𝑝, 𝑥𝑖), 𝑙 ∶= 𝑑(𝑥0, 𝑥𝑛) and 𝑙𝑖 ∶= 𝑑(𝑥𝑖, 𝑥𝑖+1).
This is illustrated in Figure 3.1. Without loss of generality we can
assume 𝑟𝑛 ≥ 𝑟0.

Remark 13. The condition for (𝑥0, 𝑥1, … , 𝑥𝑛) being a 𝜃-chain in (𝑋, 𝑑𝑝)
implies that

𝑙𝑖
𝑟𝑖𝑟𝑖+1

≤
4𝜃𝑙
𝑟𝑛𝑟0

∀𝑖 ∈ {0, … , 𝑛 − 1}.

On the other hand if

𝑙𝑖
𝑟𝑖𝑟𝑖+1

≤
𝜃𝑙

4𝑟𝑛𝑟0
∀𝑖 ∈ {0, … , 𝑛 − 1}

holds, then (𝑥0, 𝑥1, … , 𝑥𝑛) is a 𝜃-chain in (𝑋, 𝑑𝑝).

Lemma 1. Assume that (𝑋, 𝑑) contains no 3√4𝜃-chains. Then there is an
index 𝑠 ∈ {0, … , 𝑛 − 1} such that

𝑙𝑠 > 𝑙 3√4𝜃

and
max{𝑟𝑠, 𝑟𝑠+1} 3√4𝜃 ≥ 𝑟0.
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𝑟𝑛 𝑟0

𝑟1

𝑟𝑠

𝑟𝑠+1

𝑙𝑠−1
𝑙𝑠

𝑥𝑛 𝑥0

𝑥1

𝑥2

𝑥𝑠−1𝑥𝑠
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𝑥𝑠+2

𝑙𝑛−1

𝑥𝑛−1

Figure 3.1: The view of the 𝜃-chain in (𝑋, 𝑑)

Proof. Assume for a contradiction that 𝑟𝑠
3√4𝜃 < 𝑟0 and 𝑟𝑠+1

3√4𝜃 < 𝑟0.
Then from the condition in the remark above it follows

𝑙𝑠
𝑟𝑠𝑟𝑠+1

≤
4𝜃𝑙
𝑟𝑛𝑟0

<
4𝜃𝑙𝑠

3√4𝜃𝑟𝑛𝑟0
<

4𝜃𝑙𝑠
3√4𝜃

3
𝑟𝑠𝑟𝑠+1

=
𝑙𝑠

𝑟𝑠𝑟𝑠+1
(3.1)

which is a contradiction.

Proposition 17. (𝑋, 𝑑) contains a 3√4𝜃-chain.

Proof. By the previous lemma we know that there must be some index
𝑞 such that 𝑟𝑞

3√4𝜃 ≥ 𝑟0 and for all 𝑖 ∈ {0, … , 𝑞 − 1} we have that
𝑟𝑖

3√4𝜃 < 𝑟0.
We claim that (𝑥𝑞, 𝑥𝑞−1, … , 𝑥1, 𝑥0, 𝑝) is a 3√4𝜃-chain in (𝑋, 𝑑). If this

were not so, there would be some 𝑖 ∈ {0, … , 𝑞−1} for which 𝑟𝑞
3√4𝜃 < 𝑙𝑖.

But then

𝑟𝑞
3√4𝜃

2

𝑟0𝑟𝑞
<

𝑟𝑞
3√4𝜃

𝑟𝑖𝑟𝑞
≤

𝑟𝑞
3√4𝜃

𝑟𝑖𝑟𝑖+1
<

𝑙𝑖
𝑟𝑖𝑟𝑖+1

≤
4𝜃𝑙
𝑟𝑛𝑟0

(3.2)
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Figure 3.2: The constructed 3√4𝜃-chain in (𝑋, 𝑑)

implies

𝑟𝑛 < 3√4𝜃𝑙 ≤
1
2

𝑙, (3.3)

which is a contradiction to the triangle inequality of the metric space
(𝑋, 𝑑).

Proof of Theorem 9. The proof of the theorem now follows directly from
Proposition 15.
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3.4 applications of the theorems

For the following we need a short definition [DS97]: Let 𝐹 be a finite
set with 𝑘 ≥ 2 elements and let 𝐹∞ denote the set of sequences {𝑥𝑖}∞

𝑖=1
with 𝑥𝑖 ∈ 𝐹. For two elements 𝑥 = {𝑥𝑖}, 𝑦 = {𝑦𝑖} ∈ 𝐹∞ let

𝐿(𝑥, 𝑦) = sup{𝐼 ∈ ℕ | ∀1 ≤ 𝑖 ≤ 𝐼 ∶ 𝑥𝑖 = 𝑦𝑖}.

In particular we have 𝐿(𝑥, 𝑥) = ∞ and 𝐿(𝑥, 𝑦) = 0 if 𝑥1 ≠ 𝑦1. Given
0 < 𝑎 < 1 set 𝜌𝑎(𝑥, 𝑦) = 𝑎𝐿(𝑥,𝑦). This defines an ultrametric on 𝐹∞. We
call (𝐹∞, 𝜌𝑎) the symbolic 𝑘-Cantor set with parameter 𝑎.

A more geometric way of looking at this definition is the following.
Consider a infinite complete binary metric tree (𝑇, 𝑑) where each edge
has length 1. This is clearly a 0-hyperbolic space and in particular
CAT(−1). Label the root vertex by 𝑜. Then 𝐹∞ coincides with the
Gromov boundary 𝜕∞𝑇 of 𝑇 and 𝐿 is precisely the Gromov product
(⋅|⋅)𝑜 on 𝜕∞𝑇.

As an application of the theorems we provide a generalization of
the following result by David and Semmes:

Proposition 18 (Proposition 15.11 (Uniformization) in [DS97]). Sup-
pose that (𝑀, 𝑑) is a compact metric space which is bounded, complete, dou-
bling, uniformly disconnected, and uniformly perfect. Then 𝑀 is quasi-
symmetrically equivalent to the symbolic Cantor set 𝐹∞, where we take
𝐹 = {0, 1} and we use the metric 𝜌𝑎 on 𝐹∞ with parameter 𝑎 = 1

2 .

We can generalize this result as follows:

Theorem 11. Suppose that (𝑀, 𝑑) is a complete, doubling, uniformly perfect
and uniformly disconnected metric space. Then𝑀 is quasi-Möbius equivalent
to the symbolic Cantor set as given above.

Proof. Let 𝑝 ∈ 𝑀 be some point and let 𝑠𝑝(𝑥, 𝑦) = 𝑑(𝑥,𝑦)
(𝑑(𝑥,𝑝)+1)(𝑑(𝑦,𝑝)+1) .

Let
̂𝑑𝑝(𝑥, 𝑦) = inf

⎧{
⎨{⎩

𝑘
∑
𝑖=1

𝑠𝑝(𝑥𝑖, 𝑥𝑖−1)
∣∣∣∣
𝑥 = 𝑥0, … , 𝑥𝑘 = 𝑦 ∈ 𝑋

⎫}
⎬}⎭

,
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then we have by [BK02; BHX08] that

1
4

𝑠𝑝(𝑥, 𝑦) ≤ ̂𝑑𝑝(𝑥, 𝑦) ≤ 𝑠𝑝(𝑥, 𝑦) ≤
1

1 + 𝑑(𝑥, 𝑝)
+

1
1 + 𝑑(𝑦, 𝑝)

.

Then the space (𝑀, ̂𝑑𝑝) is bounded and satisfies all the properties of
the above proposition: The map 𝑓 ∶ (𝑋, 𝑑) → (𝑋, ̂𝑑𝑝) given by 𝑑 ↦ ̂𝑑𝑝
is Möbius. By Theorem 9 and Theorem 8, doubling and uniformly
disconnectedness are invariant under Möbius maps. The invariance
of uniformly perfectness follows from [Mey09], and the invariance of
completeness follows from [BS15]. Totally boundedness follows from
the doubling property and therefore the space (𝑋, ̂𝑑𝑝) is compact.

Definition 31 (Ahlfors regularity [Hei01]). A metric space (𝑋, 𝑑) ad-
mitting a Borel regular measure 𝜇 such that

𝐶−1𝑟𝑛 ≤ 𝜇(𝐵𝑟) ≤ 𝐶𝑟𝑛

for some constants 𝐶 ≥ 1, 𝑛 > 0 and for all closed balls 𝐵𝑟 of radius 0 < 𝑟 <
diam(𝑋), is called Ahlfors regular.

We can apply the same idea to Proposition 16.9 in [DS97] and we
get:

Corollary 1. Let (M,d) be a complete Ahlfors regular metric space of di-
mension 𝛾 which is uniformly disconnected. Then there exists a doubling
measure 𝜇 on 𝐹∞, and (𝑀, 𝑑) is quasi-Möbius equivalent to (𝐹∞, 𝐷), where
𝐷 is given by

𝐷(𝑥, 𝑦) = (𝜇(�̄�(𝑥, 𝑑𝑎(𝑥, 𝑦))) + 𝜇(�̄�(𝑦, 𝑑𝑎(𝑥, 𝑦))))
1
𝛾 ,

and 0 < 𝑎 < 1.

This follows from the above remarks and the invariance of Ahlfors
regularity under 𝑑 ↦ ̄𝑑𝑝 as shown in [LS15].



4
METR IZ ING THE GROMOV CLOSURE

To me the converging objects of the universe
perpetually flow,
All are written to me, and I must get what the
writing means.

— Walt Whitman

The following chapter is based on the unpublished article “Metrizing
the Gromov closure” by Urs Lang and Viktor Schroeder [LS07]. The
original article only considered the cases CAT(−1) and 𝛿-hyperbolic
spaces and some proof were left incomplete. I extended the work to
general CAT(𝜅) spaces and CBB(𝜅) spaces and gave some results that
apply to general metric spaces. The CBB result also answers a question
originally asked by Marc Lischka. Together with Viktor Schroeder
I constructed an example space with proves a sharp bound on the
constant used in one of the results. Results that have been taken from
[LS07] are cited as such.

4.1 introduction and definitions

Themain idea of this article is to provide a method to study the bound-
ary at infinity of a hyperbolic metric space by transforming the metric
in such a way that the boundary appears as the points on a sphere
with fixed radius from a chosen base point. This will in particular give
a better understanding of the metric structures on the ideal boundary
of a CAT(−1) space (which are due to Hammenstädt [Ham91] and
Bourdon [Bou96]).

4.1 .1 Generalized Trigonometric Functions

In the following we use the following trigonometric functions.
45
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Definition 32. Let

sn𝜅(𝑥) ∶=

⎧{{{{
⎨{{{{⎩

sin(√𝜅𝑥)/√𝜅, if 𝜅 > 0

𝑥, if 𝜅 = 0

sinh(√−𝜅𝑥)/√−𝜅, if 𝜅 < 0

and

cs𝜅(𝑥) ∶=

⎧{{{{
⎨{{{{⎩

cos(√𝜅𝑥), if 𝜅 > 0

1, if 𝜅 = 0

cosh(√−𝜅𝑥), if 𝜅 < 0.

Also let the inverse functions be given by

arcsn𝜅(𝑥) ∶=

⎧{{{{
⎨{{{{⎩

arcsin(√𝜅𝑥)/√𝜅, if 𝜅 > 0

𝑥, if 𝜅 = 0

arcsinh(√−𝜅𝑥)/√−𝜅, if 𝜅 < 0

and

arccs𝜅(𝑥) ∶=

⎧{{{{
⎨{{{{⎩

arccos(𝑥)/√𝜅, if 𝜅 > 0

1, if 𝜅 = 0

arccosh(𝑥)/√−𝜅, if 𝜅 < 0.

Those functions are the solutions of the second order differential
equation 𝑓 ″ + 𝜅𝑓 = 0 satisfying the initial conditions

sn𝜅(0) = 0, sn′
𝜅(0) = 1, cs𝜅(0) = 1, cs′

𝜅(0) = 0.

See [BC91, pp. 170–222] and [LS14] for a more in depth treatment of
those functions.

Proposition 19 (Trigonometric Identities [LS14]). The following classi-
cal identities hold for the generalized functions:

1. cs𝜅(𝑥)2 + 𝜅 sn𝜅(𝑥)2 = 1, 𝑥 ∈ ℝ,
(Pythagorean trigonometric identity)
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2. sn𝜅(𝑥 + 𝑦) = sn𝜅(𝑥) cs𝜅(𝑦) + cs𝜅(𝑥) sn𝜅(𝑦) for 𝑥, 𝑦 ∈ ℝ,

3. cs𝜅(𝑥 + 𝑦) = cs𝜅(𝑥) cs 𝜅(𝑦) − 𝜅 sn𝜅(𝑥) sn𝜅(𝑦) for 𝑥, 𝑦 ∈ ℝ,

4. arcsn𝜅(𝑥) = ln(𝑥 + √𝑥2 + 1)/√−𝜅 for 𝜅 < 0, 𝑥 ∈ ℝ,

5. arccs𝜅(𝑥) = ln(𝑥 + √𝑥2 − 1)/√−𝜅 for 𝜅 < 0, 𝑥 ∈ [1, ∞[,

6. cs𝜅(arccs𝜅(𝑥)/2) = √𝑥+1
√2

for 𝜅 < 0, 𝑥 ∈ [−1, ∞[.
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4.2 the spaces of constant curvature

Although the following are standard mathematical results we could
not find a similar complete construction in the literature. This section
is based on hand written notes of Viktor Schroeder. We construct the
model spaces and derive formulas for the distance calculation which
we will use later on.

In the following let 0 < 𝑛 ∈ ℕ and 𝜅 ∈ ℝ. We define models
𝑀𝑛

𝜅 of the space of constant curvature 𝜅 as subsets of ℝ1+𝑛. We use
coordinates 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑛) and define the bilinear form:

⟨𝑥, 𝑦⟩𝜅 = 𝑥0𝑦0 + 𝜅
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖.

Let 𝑀𝜅 be the connected component of 𝑒0 = (1, 0, … , 0) of the set
{𝑥 ∈ ℝ1+𝑛 | ⟨𝑥, 𝑥⟩𝜅 = 1}. 𝑀𝜅 is a sub-manifold of ℝ1+𝑛 and for every
𝑝 ∈ 𝑀𝜅 the tangent space at 𝑝 is given by

𝑇𝑝𝑀𝜅 = {𝑣 ∈ ℝ1+𝑛 | ⟨𝑣, 𝑝⟩𝜅 = 0}.

In particular 𝑇𝑒0𝑀𝑘 = ℝ𝑛 ⊂ ℝ1+𝑛, where ℝ𝑛 ↪ ℝ1+𝑛, 𝑥 ↦ (0, 𝑥) is
the canonical embedding. The bilinear form 1

𝜅⟨⋅, ⋅⟩𝜅 is positive definite1
on 𝑇𝑝𝑀𝜅 and defines a Riemannian metric on 𝑀𝜅.

1 For 𝜅 ≥ 0 this is trivial. For 𝜅 < 0 consider the following: From ⟨𝑝, 𝑝⟩𝜅 = 1 it follows

that 𝑝2
0 = 1 − 𝜅 ∑𝑛

𝑖=1 𝑝2
𝑖 . Furthermore ⟨𝑝, 𝑣⟩𝜅 = 0 implies that 𝑣0 = −

𝜅 ∑𝑛
𝑖=1 𝑝𝑖𝑣𝑖

𝑝0
.

Therefore we get

1
𝜅

⟨𝑣, 𝑣⟩𝜅 =
𝜅(∑𝑛

𝑖=1 𝑝𝑖𝑣𝑖)2

𝑝2
0

+
𝑛

∑
𝑖=1

𝑣2
𝑖

=
𝜅(∑𝑛

𝑖=1 𝑝𝑖𝑣𝑖)2

1 − 𝜅 ∑𝑛
𝑖=1 𝑝2

𝑖
+

𝑛

∑
𝑖=1

𝑣2
𝑖

=
𝜅((∑𝑛

𝑖=1 𝑝𝑖𝑣𝑖)2 − (∑𝑛
𝑖=1 𝑝2

𝑖 )(∑𝑛
𝑖=1 𝑣2

𝑖 )) + ∑𝑛
𝑖=1 𝑣2

𝑖

1 − 𝜅 ∑𝑛
𝑖=1 𝑝2

𝑖

We can now apply the Cauchy-Schwarz inequality to get
1
𝜅

⟨𝑣, 𝑣⟩𝜅 ≥ 0.



4.2 the spaces of constant curvature 49

In the case of 𝑀0, 𝑇𝑝𝑀0 = ℝ𝑛 ⊂ ℝ1+𝑛 for all 𝑝 and there we view
1
𝜅⟨⋅, ⋅⟩𝜅|ℝ𝑛 = ⟨⋅, ⋅⟩ as the standard inner product on ℝ𝑛.

Let 𝑣 ∈ 𝑇𝑒0𝑀𝜅, i.e. 𝑣 ∈ ℝ𝑛 with ‖𝑣‖ = 1 and consider

𝛾𝑣(𝑡) = cs𝜅(𝑡)𝑒0 + sn𝜅(𝑡)𝑣

then 𝛾𝑣(𝑡) ∈ 𝑀𝜅 since

⟨𝛾𝑣(𝑡), 𝛾𝑣(𝑡)⟩𝜅 = cs𝜅(𝑡)2 + 𝜅 sn𝜅(𝑡)2 = 1.

We calculate

⟨𝛾𝑣, 𝛾′
𝑣⟩𝜅 = 0 | since 𝛾′

𝑣 = −𝜅 sn𝜅 𝑒0 + cs𝜅 𝑣,
1
𝜅

⟨𝛾′
𝑣, 𝛾′

𝑣⟩𝜅 =
1
𝜅

(𝜅2 sn2
𝜅 +𝜅 cs𝜅) = 1,

𝛾″
𝑣 = (−𝜅)𝛾𝑣 ⟹ 𝛾″

𝑣(𝑡) ⟂𝜅 𝑇𝛾𝑣(𝑡)𝑀𝜅.

Thus 𝛾𝑣 is the unit speed geodesic in 𝑀𝜅 with 𝛾𝑣(0) = 𝑒0, 𝛾′
𝑣(0) = 𝑣.

Consider the linear map (“rotation in the plane span(𝑒0, 𝑣)”) given
by

𝑅𝑣(𝑡) = ⎛⎜⎜
⎝

cs𝜅(𝑡) −𝜅 sn𝜅(𝑡)
sn𝜅(𝑡) cs𝜅(𝑡)

⎞⎟⎟
⎠

,

i.e. given in an orthonormal basis 𝑒0, 𝑣, 𝑣2, … , 𝑣𝑛 it looks like

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑅𝑣(𝑡)
1

�
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This is a 1-parameter group of isometries of 𝑀𝜅, since it leaves the
bilinear form ⟨⋅, ⋅⟩𝜅 invariant.

The isometry group of 𝑀𝜅 is generated by the 𝑅𝑣(𝑇), 𝑣 ∈ 𝑆𝑛−1 and
𝑂(𝑛), the orthogonal group embedded as

⎛⎜⎜
⎝

1
𝑂(𝑛)

⎞⎟⎟
⎠

⊂ Gl(1 + 𝑛).

These isometries are the linear maps of ℝ1+𝑛 leaving ⟨⋅, ⋅⟩𝜅 invariant
and preserve the connected component 𝑀𝜅. Iso𝑀𝜅 is transitive.
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ℝ

ℝ𝑛

𝜁𝜅(𝑥)

𝑥
−𝑒0 𝑒0

𝑀𝜅

Figure 4.1: The projection of the point 𝑥.

4.2.1 Formula for the Distance Function

We now compute the distance function 𝑑 = 𝑑𝑀
𝜅 of 𝑀𝜅. Let 𝑝 ∈ 𝑀𝜅,

with 𝑑(𝑝, 𝑒0) = 𝑡. Then 𝑝 = 𝛾𝑣(𝑡) = cs𝜅(𝑡)𝑒0 + sn𝜅(𝑡)𝑣 for a suitable
𝑣 ∈ 𝑆𝑛−1. Thuswehave cs𝜅(𝑑(𝑒0, 𝑝)) = ⟨𝑒0, 𝑝⟩𝜅. Since ⟨⋅, ⋅⟩𝜅 is invariant
under Iso(𝑀𝜅) and Iso(𝑀𝜅) operates transitively, we have

∀𝑝, 𝑞 ∈ 𝑀𝑘 ∶ cs𝜅(𝑑𝑀
𝜅 (𝑝, 𝑞)) = ⟨𝑝, 𝑞⟩𝜅. (4.1)

4.2.1 .1 The Ball Model of 𝑀𝜅

We project the points of 𝑀𝜅 from −𝑒0 to ℝ𝑛. We have

𝜁𝜅 ∶ ℝ𝑛 ⊃ 𝐵𝜅 → 𝑀𝜅 ⊂ ℝ1+𝑛
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given by

𝜁𝜅(𝑥) = (
1 − 𝜅‖𝑥‖2

1 + 𝜅‖𝑥‖2 ,
2𝑥

1 + 𝜅‖𝑥‖2 ) ,

where

𝐵𝜅 = {𝑥 ∈ ℝ𝑛 | 1 + 𝜅‖𝑥‖2 > 0} = {𝑥 | ‖𝑥‖ <
1

√−𝜅
} ⊂ ℝ𝑛.

For 𝜅 > 0 the ball model describes all points of 𝑀𝜅 except −𝑒0 (which
corresponds to the point at ∞ in this model).

We compute now the distance 𝑑𝐵
𝜅 on 𝐵𝜅 such that

𝜁𝜅 ∶ (𝐵𝜅, 𝑑𝐵
𝜅 ) → (𝑀𝜅, 𝑑𝑀

𝜅 )

is an isometry. For the computation let 𝑑 = 𝑑𝐵
𝜅 , then

cs𝜅(𝑑(𝑥, 𝑦)) = cs𝜅(𝑑𝑀
𝜅 (𝜁𝜅(𝑥), 𝜁𝜅(𝑦)))

= ⟨𝜁𝜅(𝑥), 𝜁𝜅(𝑦)⟩𝜅

=
(1 − 𝜅‖𝑥‖2)(1 − 𝜅‖𝑦‖2) + 2𝜅⟨𝑥, 𝑦⟩

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)

= 1 −
2𝜅‖𝑥 − 𝑦‖2

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)
.

Thus
cs𝜅(𝑑𝐵(𝑥, 𝑦)) = 1 −

2𝜅‖𝑥 − 𝑦‖2

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)
. (4.2)

This can be written in the following equivalent ways:

𝑑(𝑥, 𝑦) = arccs𝜅 (1 −
2𝜅‖𝑥 − 𝑦‖2

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)
) (4.3)

= 2 arcsn𝜅
⎛⎜⎜⎜
⎝

‖𝑥 − 𝑦‖
√1 + 𝜅‖𝑥‖2√1 + 𝜅‖𝑦‖2

⎞⎟⎟⎟
⎠

. (4.4)

We now compute the euclidean distance out of 𝑑𝐵.
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Proposition 20 (The case 𝜅 = −1 is Lemma 2.1 (A) from [LS07]). Let
𝑥, 𝑦 ∈ 𝐵𝜅, 𝑑 = 𝑑𝐵

𝜅 then

‖𝑥 − 𝑦‖ =
sn𝜅(𝑑(𝑥, 𝑦)/2)

cs𝜅(𝑑(𝑥, 𝑜)/2) cs𝜅(𝑑(𝑦, 𝑜)/2)
. (4.5)

Proof. We use the formulas

𝜅 sn2
𝜅(𝑡/2) =

1 − cs𝜅(𝑡)
2

(a)

and
cs2

𝜅(𝑡/2) =
1 + cs𝜅(𝑡)

2
(b)

then from Equation a together with Equation 4.2 we obtain:

sn2
𝜅(𝑑(𝑥, 𝑦)/2) =

‖𝑥 − 𝑦‖2

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)
.

From Equation b those together with Equation 4.2 we obtain:

cs2
𝜅(𝑑(𝑥, 𝑜)/2) = 1 −

𝜅‖𝑥‖2

1 + 𝜅‖𝑥‖2 =
1

1 + 𝜅‖𝑥‖2 .

Combining those we obtain the statement.
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4.2.1 .2 Upper Half Space Model for 𝜅 < 0

Now let 𝜅 < 0, let 𝒰 ⊂ ℝ𝑛 be the upper half space given by

𝒰 ∶= {(𝑥1, … , 𝑥𝑛) | 𝑥𝑛 > 0}.

Let ̄⋅ ∶ ℝ𝑛 → ℝ𝑛 be the conjugation given by

𝑥 = (𝑥1, … , 𝑥𝑛) ↦ ̄𝑥 = (𝑥1, … , 𝑥𝑛−1, −𝑥𝑛).

Let 𝜎𝜅 be the involution at the sphere 𝑆( 1
√−𝜅𝑒𝑛, √−2

𝜅)with center 1
√−𝜅𝑒𝑛

and radius √−2
𝜅 . Then 𝜎𝜅(𝒰) = 𝐵𝜅, where 𝒰 denotes the lower half

space. Furthermore

𝜂𝜅 ∶ 𝒰 ⟶ 𝐵𝜅

𝑥 ⟼ 𝜎𝜅( ̄𝑥).

On 𝒰 we define the metric 𝑑𝒰
𝜅 in a way such that 𝜂𝜅 is an isometry

(𝒰, 𝑑𝒰
𝜅 → (𝐵𝜅, 𝑑𝐵

𝜅 ).

Thus

cs𝜅(𝑑𝒰
𝜅(𝑥, 𝑦)) = cs𝜅(𝑑𝐵

𝜅 (𝜂𝜅(𝑥), 𝜂𝜅(𝑦)))

= 1 − 2
𝜅‖𝜂𝜅(𝑥) − 𝜂𝜅(𝑦)‖2

(1 + 𝜅‖𝜂𝜅(𝑥)‖2)(1 + 𝜅‖𝜂𝜅(𝑦)‖2)
.

Note that if 𝜎 = Inv𝑆(𝑎,𝑟) then

‖𝜎( ̄𝑥) − 𝜎( ̄𝑦)‖ ≐
𝑟2‖ ̄𝑥 − ̄𝑦‖

‖ ̄𝑥 − 𝑎‖‖ ̄𝑦 − 𝑎‖

by the definition for involutions. We therefore have

𝜂𝜅(𝑥) = 𝑎 + 𝑟2 ( ̄𝑥 − 𝑎)
‖ ̄𝑥 − 𝑎‖

,
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ℝ𝑛−1

𝑒𝑛

√− 2
𝜅

1
√−𝜅𝑒𝑛

Figure 4.2: The upper half space model
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where 𝑎 = 1
√−𝜅𝑒𝑛 and 𝑟 = √−2

𝜅 . We thus compute

1 + 𝜅‖𝜂𝜅(𝑥)‖2 = 1 + 𝜅 (⟨𝑎, 𝑎⟩ −
4
𝜅

⟨ ̄𝑥 − 𝑎, 𝑎⟩
‖ ̄𝑥 − 𝑎‖2 +

4
𝜅2

1
‖ ̄𝑥 − 𝑎‖2 )

= −
4

‖ ̄𝑥 − 𝑎‖2 (⟨ ̄𝑥 − 𝑎, 𝑎⟩ −
1
𝜅

)

= −
4

‖ ̄𝑥 − 𝑎‖2 ⟨ ̄𝑥, 𝑎⟩.

This implies that

𝜅‖𝜂𝜅(𝑥) − 𝜂𝜅(𝑦)‖2

(1 + 𝜅‖𝜂𝜅(𝑥)‖2)(1 + 𝜅‖𝜂𝜅(𝑦)‖2)

=
‖ ̄𝑥 − 𝑎‖2‖𝑦 − 𝑎‖2

16⟨ ̄𝑥, 𝑎⟩⟨ ̄𝑦, 𝑎⟩
⋅ 𝜅 ⋅ (

−2
𝜅

)
2

⋅
‖ ̄𝑥 − ̄𝑦‖2

‖ ̄𝑥 − 𝑎‖2‖ ̄𝑦 − 𝑎‖2

=
‖ ̄𝑥 − ̄𝑦‖2

4𝜅⟨ ̄𝑥, 𝑎⟩⟨ ̄𝑦, 𝑎⟩
= −

‖𝑥 − 𝑦‖2

4𝑥𝑛𝑦𝑛
,

thus
cs𝜅(𝑑𝒰

𝜅(𝑥, 𝑦)) = 1 +
‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛
. (4.6)

And we get the formula

𝑑𝒰
𝜅(𝑥, 𝑦) = arccs𝜅(1 +

‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛
)

for the distance function. This can also be written as follows:

𝑑𝒰(𝑥, 𝑦) = arccs𝜅 (1 +
‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛
) (4.7)

= 2 arcsn𝜅
⎛⎜⎜⎜
⎝

1
2√−𝜅

√‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛

⎞⎟⎟⎟
⎠

(4.8)

= 2 ln⎛⎜
⎝

‖𝑥 − 𝑦‖ + ‖𝑥 − 𝑦 + 2𝑦𝑛𝑒𝑛‖
2√𝑥𝑛𝑦𝑛

⎞⎟
⎠

1
√−𝜅

. (4.9)
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vertical geodesics in (𝒰, 𝑑𝒰
𝜅) We define

ex𝜅(𝑡) ∶= exp(√−𝜅𝑡)

and
ln𝜅(𝑡) ∶=

ln(𝑡)
√−𝜅

(for 𝜅 < 0). Then 𝛾(𝑡) ∶= 1
√−𝜅 ex𝜅(𝑡)𝑒𝑛 = 1

√−𝜅 exp(√−𝜅𝑡) ⋅ 𝑒𝑛 is the

unit speed geodesic in 𝒰 with 𝛾(0) = 1
√−𝜅𝑒𝑛. Indeed:

cs𝜅(𝑑𝒰(𝛾(𝑡), 𝛾(0))) = 1 +
(ex𝜅(𝑡) − 1)2

2 ex𝜅(𝑡)

=
1
2

(ex𝜅(𝑡) + ex𝜅(−𝑡))

= cs𝜅(𝑡)
⟹ 𝑑𝒰

𝜅(𝛾(𝑡), 𝛾(0)) = 𝑡.

Now let𝐵 be the Busemann function of𝛾normalized such that𝐵(𝛾(𝑡)) =
−𝑡. Then

𝐵(𝑥) = −
1

√−𝜅
ln(√−𝜅𝑥𝑛).

We then compute:

Proposition 21 (The case 𝜅 = −1 is Lemma 2.1 (B) from [LS07]).

‖𝑥 − 𝑦‖ =
2 sn𝜅 (𝑑𝒰

𝜅(𝑥,𝑦)
2

)

ex𝜅 (𝐵(𝑥)
2

) ex𝜅 (𝐵(𝑦)
2

)
. (4.10)

Proof. Using

𝜅 sn2
𝜅(𝑡/2) =

1 − cs𝜅(𝑡)
2

we have
−𝜅 sn2

𝜅 (
𝑑(𝑥, 𝑦)

2
) =

‖𝑥 − 𝑦‖2

4𝑥𝑛𝑦𝑛
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and
ex𝜅(𝐵(𝑥)/2) = exp(−

1
2
ln(√−𝜅𝑥𝑛)) =

1

(√−𝜅𝑥𝑛)
1
2

thus
ex2

𝜅(𝐵(𝑥)/2) ex2
𝜅(𝐵(𝑦)/2) =

1
(−𝜅)𝑥𝑛𝑦𝑛

.
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4.2.2 Summary

In the following we summarize the just computed model spaces.
Rewriting the definitions from the previous chapter one can state
the metric in several equivalent ways.

4.2.2.1 Upper Half Space Model

Let 𝜅 < 0 and 𝑋 = {𝑥 ∈ ℝ𝑛 | 𝑥𝑛 > 0} and let

𝑑(𝑥, 𝑦) = arccs𝜅(1 +
‖𝑥 − 𝑦‖2

2𝑥𝑛𝑦𝑛
)

= 2 arcsn𝜅
⎛⎜⎜⎜
⎝

1
2√−𝜅

√‖𝑥 − 𝑦‖2

𝑥𝑛𝑦𝑛

⎞⎟⎟⎟
⎠

= 2 ln𝜅
⎛⎜
⎝

‖𝑥 − 𝑦‖ + ‖𝑥 − 𝑦 + 2𝑦𝑛𝑒𝑛‖
2√𝑥𝑛𝑦𝑛

⎞⎟
⎠

.

And by Proposition 21 we get the corresponding formula to recover
the euclidean distance by:

‖𝑥 − 𝑦‖ =
2 sn𝜅 (𝑑𝒰

𝜅(𝑥,𝑦)
2

)

ex𝜅 (𝐵(𝑥)
2

) ex𝜅 (𝐵(𝑦)
2

)
.

4.2.2.2 Disk Model

Let 0 ≠ 𝜅 ∈ ℝ and let 𝑋 = {𝑥 ∈ ℝ𝑛 | 1 + 𝜅‖𝑥‖2 > 0} with

𝑑(𝑥, 𝑦) = arccs𝜅(1 −
2𝜅‖𝑥 − 𝑦‖2

(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑦‖2)
)

= 2 arcsn𝜅
⎛⎜⎜⎜
⎝

‖𝑥 − 𝑦‖
√1 + 𝜅‖𝑥‖2√1 + 𝜅‖𝑦‖2

⎞⎟⎟⎟
⎠

.

By Proposition 20 we get can recover the euclidean distance with:

‖𝑥 − 𝑦‖ =
sn𝜅(𝑑(𝑥, 𝑦)/2)

cs𝜅(𝑑(𝑥, 𝑜)/2) cs𝜅(𝑑(𝑦, 𝑜)/2)
.
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For 𝜅 = 0 we just let 𝑑(𝑥, 𝑦) = 2‖𝑥 − 𝑦‖ which is compatible with the
second formula above.

Based on this observations we will define functions 𝐹 and 𝐺 in the
next section which represent the formulas for recovering the euclidean
distance.
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4.3 results

4.3.1 Spaces of Constant Sectional Curvature

Definition 33. In the following let

𝐹𝜅(𝑐; 𝑎, 𝑏) ∶=
sn𝜅(𝑐/2)

cs𝜅(𝑎/2) cs𝜅(𝑏/2)

and
𝐹(𝑐; 𝑎, 𝑏) ∶= 𝐹−1(𝑐; 𝑎, 𝑏)

furthermore let

𝐺𝜅(𝑐; 𝑎, 𝑏) ∶=
2 sinh(𝑐√−𝜅/2)

exp(𝑎√−𝜅/2) exp(𝑏√−𝜅/2)
=

2 sn𝜅(𝑐/2)√|𝜅|
exp(𝑎√|𝜅|/2) exp(𝑏√|𝜅|/2)

.

We will prove the following result:

Theorem 12. Let (𝑋, 𝑑) be a simply connected, 𝑛-dimensional Riemannian
manifold with constant sectional curvature 𝜅 ∈ ℝ. Let 𝑜 ∈ 𝑋 be a base point
and 𝜔 ∈ 𝜕∞𝑋 be some point on the geodesic boundary and let 𝜌𝑜(𝑥, 𝑦) =
𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)) and let 𝜌𝜔,𝑜(𝑥, 𝑦) = 𝐺𝜅(𝑑(𝑥, 𝑦); 𝐵(𝑥), 𝐵(𝑦))
where 𝐵 is the Busemann function of 𝜔 normalized such that 𝐵(𝑜) = 0.
Then:

1. If 𝜅 = 0, then the space (𝑋, 𝜌𝑜) is a metric space isometric to the
𝑛-dimensional euclidean space.

2. If 𝜅 < 0, then the space (𝑋, 𝜌𝑜) is a metric space isometric to the ball
of radius 1

√−𝜅 in 𝑛-dimensional euclidean space.

3. If 𝜅 < 0, then the space (𝑋, 𝜌𝜔,𝑜) is a metric space isometric to the
upper half plane {𝑥 ∈ ℝ𝑛 | 𝑥0 > 0}.

4. If 𝜅 > 0, then the space (𝑋, 𝜌𝑜) is isometric to the sphere 𝕊𝑛
𝑟 of radius

𝑟 = 1
√𝜅 with metric induced from the metric of ℝ𝑛+1.
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Collecting the calculations from the previous section, we can in each
model space recover the euclidean distance using some calculation.
We summarize this in the following proposition:

Lemma 2. 1. Let 𝑥, 𝑦 be two points in the Poincaré unit disk model space
(𝑋, 𝑑) (with curvature 𝜅 < 0) of the hyperbolic plane. Furthermore
take 𝜔 ∈ 𝑋 fixed. Denote by 𝑎 ∶= 𝑑(𝑥, 𝜔), 𝑏 ∶= 𝑑(𝑦, 𝜔), 𝑐 ∶= 𝑑(𝑥, 𝑦)
the hyperbolic distances. Then the Euclidean distance between 𝑥 and 𝑦
is given by

‖𝑥−𝑦‖ =
sn𝜅(𝑐/2)

cs𝜅(𝑎/2) cs𝜅(𝑏/2)
=

sinh(𝑐√−𝜅/2)
cosh(𝑎√−𝜅/2) cosh(𝑏√−𝜅/2)√−𝜅

.

2. Let 𝑥, 𝑦 be two points in the Poincaré upper half plane model space
(with curvature 𝜅 < 0) of the hyperbolic plane. Let 𝜔 ∈ 𝑋 be fixed.
Let 𝐵 be the Busemann function of ∞ normalized such that 𝐵(𝑜) = 0.
Denote by 𝑎 ∶= 𝐵(𝑥), 𝑏 ∶= 𝐵(𝑦), 𝑐 ∶= 𝑑(𝑥, 𝑦). Then the Euclidean
distance between x and y is given by

‖𝑥 − 𝑦‖ =
2 sinh(𝑐√−𝜅/2)

exp(𝑎√−𝜅/2) exp(𝑏√−𝜅/2)
.

3. Let 𝑥, 𝑦, 𝑝 be three points in the spherical model space (with curvature
𝜅 > 0). Denote 𝑎 ∶= 𝑑(𝑥, 𝑝), 𝑏 ∶= 𝑑(𝑦, 𝑝), 𝑐 ∶= 𝑑(𝑥, 𝑦). Then the
Euclidean distance between 𝑥 and 𝑦 is given by

‖𝑥 − 𝑦‖ =
sn𝜅(𝑐/2)

cs𝜅(𝑎/2) cs𝜅(𝑏/2)
=

sin(𝑐√𝜅/2)
cos(𝑎√𝜅/2) cos(𝑏√𝜅/2)√𝜅

.

Proof. This follows from the previous lemmas. Additional constructive
proofs are given in the appendix.
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4.3.2 CAT(𝜅)-Spaces for 𝜅 < 0

Theorem 13. Let 𝑋 = (𝑋, 𝑑) be a complete CAT(𝜅)-space for 𝜅 < 0. Fix
𝑜 ∈ 𝑋 and 𝜔 ∈ 𝜕∞𝑋. Then

1. The functions given by

𝜌𝑜(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜))

and
𝜌𝜔,𝑜(𝑥, 𝑦) ∶= 𝐺𝜅(𝑑(𝑥, 𝑦), 𝐵(𝑥), 𝐵(𝑦)),

where 𝐵 is the Busemann function of 𝜔 normalized such that 𝐵(𝑜) = 0,
are metrics on 𝑋.

2. We can extend 𝜌𝑜 to a metric on �̄� = 𝑋 ∪ 𝜕∞𝑋, and 𝜌𝜔,𝑜 to a metric
on �̄� ⧵ {𝜔} and the following relations hold for 𝜉 , 𝜂 ∈ 𝜕∞𝑋 ⧵ {𝜔}:

𝜌𝑜(𝜉 , 𝜂) =
2 exp(−(𝜉 |𝜂)𝑜√−𝜅)

√−𝜅
,

𝜌𝜔,𝑜(𝜉 , 𝜂) = 𝑒−(𝜉|𝜂)𝜔,𝑜√−𝜅,

𝜌𝜔,𝑜(𝑥, 𝑦) =
2𝜌𝑜(𝑥, 𝑦)

𝜌𝑜(𝑥, 𝜔)𝜌𝑜(𝑦, 𝜔)√−𝜅
.

3. If 𝛾 ∶ (𝑋, 𝑑) → (𝑋, 𝑑) is an isometry, then 𝛾 ∶ (𝑋, 𝜌) → (𝑋, 𝜌) is a
Möbius-map where 𝜌 = 𝜌𝑜 or 𝜌 = 𝜌𝜔,𝑜.

4. The spaces (𝑋, 𝜌𝑜) and (𝑋, 𝜌𝜔,𝑜) are Ptolemaic spaces.

outline of proof. In order to proof item 1, we have to show that
the distance function 𝜌𝑜 satisfies the triangle inequality. We use the
fact that by the CAT(𝜅) inequality we can compare triangles in the
model spaces. Furthermore we know that the triangle inequality
holds when we apply the function 𝐹𝜅 to the metric in the model space.
This means we only need to find suitable comparison triangles and
then can apply the triangle inequality in the model space. If we find
suitable inequalities to compare the distances in our space with the
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model distances, this allows us to show the claim. The construction
we use works as follows. We embed two triangles (𝑥, 𝑦, 𝑜) and (𝑦, 𝑧, 𝑜)
simultaneously in our comparison space. Denote the comparison
triangles by ( ̄𝑥, ̄𝑦, 0) and ( ̄𝑦, ̄𝑧, 0) respectively. Furthermore denote
by 𝑑 the metric on the CAT(𝜅) space 𝑋, and by 𝜌𝑜 the metric we get
from applying the function 𝐹𝜅. In the comparison space (𝑀2

𝜅, ̄𝑑), we
denote the metric by ̄𝑑. Note that when applying the function 𝐹𝜅 to

̄𝑑 we get the euclidean metric which we denote by ‖ ⋅ − ⋅ ‖. We can
therefore keep all the side lengths of those triangles unchanged while
going to the comparison space. The only distance that can change is
𝑥𝑧, i.e., 𝑑(𝑥, 𝑧) and ̄𝑑(𝑥, 𝑧) may be different. If we require the triangles
not to overlap in the comparison space, then there are three possible
configurations in which the triangles may come to lay there. Those
three cases are therefore analyzed separately. It is either possible
to apply the CAT inequality to get the desired result, use a direct
calculation or apply Alexandrov’s Lemma to deform the triangle in
order to get a suitable inequality. For the equalities in item 2 we have
to extend the metric to the Gromov boundary. Note that in a CAT(𝜅)
space the Gromov product on the boundary is well defined regardless
of the sequence we choose. In particular lim(𝑥𝑖, 𝑦𝑖)𝑜 always exists
for 𝑥, 𝑦 ∈ 𝜕∞𝑋. Therefore the Cauchy completion and the Gromov
boundary coincide as sets. We can then use direct calculations to
approximate the limit cases, while noting that for large 𝑡 ≫ 0, sn𝜅(𝑡)
and cs𝜅(𝑡) behave approximately like exp(𝑡). Item 3 is a simple direct
computation. Item 4 follows by subembedding a 4-tuple of points in
the comparison space. This is possible by the CAT(𝜅) condition. Then
one can use the fact that the euclidean plane satisfies the Ptolemaic
inequality to proof the claim for 𝜌𝑜. The equalities then also imply by
use of item 4 that the triangle inequality holds for 𝜌𝜔,𝑜.

Lemma 3 (Theorem 2.2 in [LS07]). Let (𝑋, 𝑑) be a complete CAT(𝜅)-
space for 𝜅 < 0. Fix a base point 𝑜 ∈ 𝑋. Then the function given by

𝜌𝑜(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)),

is a metric on 𝑋.
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̄𝑥
̄𝑦

̄𝑧 �̄�

0

(a) Case 1

̄𝑥

̄𝑦

̄𝑧

0

(b) Case 2

̄𝑥
̄𝑦

̄𝑧

0

(c) Case 3

Figure 4.3: Cases for proof of Theorem 13 (1)

Proof. Let 𝑥, 𝑦, 𝑧 ∈ 𝑋. We have to show that 𝜌𝑜(𝑥, 𝑧) ≤ 𝜌𝑜(𝑥, 𝑦) +
𝜌𝑜(𝑦, 𝑧). Construct comparison triangles ̄𝑥, ̄𝑦, 0 and ̄𝑦, ̄𝑧, 0 in the (unit
disk) model space (MD2

𝜅, ̄𝑑). Choose the comparison triangle such
that they do not overlap. The following cases (See Figure 4.3) are
possible:

1. In the case the situation is like in figure (a). Then let �̄� be
the intersection point of the segments [ ̄𝑥, ̄𝑧] and [0, ̄𝑦] in the
comparison space, and let 𝑤 ∈ [𝑜, 𝑦] be the corresponding point
with 𝑑(𝑤, 𝑜) = ̄𝑑(�̄�, 0). We get:

𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)) + 𝐹𝜅(𝑑(𝑦, 𝑧); 𝑑(𝑦, 𝑜), 𝑑(𝑧, 𝑜))
= 𝐹𝜅( ̄𝑑( ̄𝑥, ̄𝑦); ̄𝑑( ̄𝑥, 0), ̄𝑑( ̄𝑦, 0)) + 𝐹𝜅( ̄𝑑( ̄𝑦, ̄𝑧); ̄𝑑( ̄𝑦, 0), ̄𝑑( ̄𝑧, 0))
= ‖ ̄𝑥 − ̄𝑦‖ + ‖ ̄𝑦 − ̄𝑧‖
≥ ‖ ̄𝑥 − ̄𝑧‖
= 𝐹𝜅( ̄𝑑( ̄𝑥, ̄𝑧); ̄𝑑( ̄𝑥, 0), ̄𝑑( ̄𝑧, 0))
= 𝐹𝜅( ̄𝑑( ̄𝑥, �̄�) + ̄𝑑(�̄�, ̄𝑧); ̄𝑑( ̄𝑥, 0), ̄𝑑( ̄𝑧, 0))
≥ 𝐹𝜅(𝑑(𝑥, 𝑤) + 𝑑(𝑤, 𝑧); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
≥ 𝐹𝜅(𝑑(𝑥, 𝑧); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
= 𝜌𝑜(𝑥, 𝑦).
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2. In the situation like in figure (b) we calculate:

𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)) + 𝐹𝜅(𝑑(𝑦, 𝑧); 𝑑(𝑦, 𝑜), 𝑑(𝑧, 𝑜))
= 𝐹𝜅( ̄𝑑( ̄𝑥, ̄𝑦); ̄𝑑( ̄𝑥, 0), ̄𝑑( ̄𝑦, 0)) + 𝐹𝜅( ̄𝑑( ̄𝑦, ̄𝑧); ̄𝑑( ̄𝑦, 0), ̄𝑑( ̄𝑧, 0))
= ‖ ̄𝑥 − ̄𝑦‖ + ‖ ̄𝑦 − ̄𝑧‖
≥ ‖ ̄𝑥 − 0‖ + ‖ ̄𝑧 − 0‖
= 𝐹𝜅( ̄𝑑( ̄𝑥, 0); ̄𝑑( ̄𝑥, 0), ̄𝑑(0, 0)) + 𝐹𝜅( ̄𝑑( ̄𝑧, 0); ̄𝑑( ̄𝑧, 0), ̄𝑑(0, 0))
= 𝐹𝜅(𝑑(𝑥, 𝑜); 𝑑(𝑥, 𝑜), 𝑑(𝑜, 𝑜)) + 𝐹𝜅(𝑑(𝑧, 𝑜); 𝑑(𝑧, 𝑜), 𝑑(𝑜, 𝑜))

=
sn𝜅(𝑑(𝑥, 𝑜)/2)
cs𝜅(𝑑(𝑥, 𝑜)/2)

+
sn𝜅(𝑑(𝑧, 𝑜)/2)
cs𝜅(𝑑(𝑧, 𝑜)/2)

=
sn𝜅(𝑑(𝑥, 𝑜)/2) cs𝜅(𝑑(𝑧, 𝑜)/2) + sn𝜅(𝑑(𝑧, 𝑜)/2) cs𝜅(𝑑(𝑥, 𝑜)/2)

cs𝜅(𝑑(𝑧, 𝑜)/2) cs𝜅(𝑑(𝑥, 𝑜)/2)

=
sn𝜅(𝑑(𝑥, 𝑜)/2 + 𝑑(𝑧, 𝑜)/2)

cs𝜅(𝑑(𝑧, 𝑜)/2) cs𝜅(𝑑(𝑥, 𝑜)/2)
= 𝐹𝜅(𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
≥ 𝐹𝜅(𝑑(𝑥, 𝑧); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
= 𝜌𝑜(𝑥, 𝑧).

3. In case (c) we deform the non-convex polygon 0, ̄𝑥, ̄𝑦, ̄𝑧 to a con-
vex polygon 0, ̄𝑥′, ̄𝑦′, ̄𝑧′ with the same side lengths and such that
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𝑥 𝑡 𝑦

𝑡

𝑜

√2𝑡

𝑡 𝑧

√2𝑡

Figure 4.4: Triangle for counterexample

̄𝑦′ lies on the hyperbolic segment [ ̄𝑥′, ̄𝑧′]. ByAlexandrov’s lemma
(see 2.16 in [BH99]) ̄𝑑( ̄𝑦′, 0) ≥ ̄𝑑( ̄𝑦, 0), therefore:

𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)) + 𝐹𝜅(𝑑(𝑦, 𝑧); 𝑑(𝑦, 𝑜), 𝑑(𝑧, 𝑜))
= 𝐹𝜅( ̄𝑑( ̄𝑥, ̄𝑦); ̄𝑑( ̄𝑥, 0), ̄𝑑( ̄𝑦, 0)) + 𝐹𝜅( ̄𝑑( ̄𝑦, ̄𝑧); ̄𝑑( ̄𝑦, 0), ̄𝑑( ̄𝑧, 0))
≥ 𝐹𝜅( ̄𝑑( ̄𝑥′, ̄𝑦′); ̄𝑑( ̄𝑥′, 0), ̄𝑑( ̄𝑦′, 0)) + 𝐹𝜅( ̄𝑑( ̄𝑦′, ̄𝑧′); ̄𝑑( ̄𝑦′, 0), ̄𝑑( ̄𝑧′, 0))
= ‖ ̄𝑥′ − ̄𝑦′‖ + ‖ ̄𝑦′ − ̄𝑧′‖
≥ ‖ ̄𝑥′ − ̄𝑧′‖
= 𝐹𝜅( ̄𝑑( ̄𝑥′, ̄𝑧′); ̄𝑑( ̄𝑥′, 0), ̄𝑑( ̄𝑧′, 0))
= 𝐹𝜅( ̄𝑑( ̄𝑥′, ̄𝑦′) + ̄𝑑( ̄𝑦′, ̄𝑧′); ̄𝑑( ̄𝑥′, 0), ̄𝑑( ̄𝑧′, 0))
= 𝐹𝜅(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
≥ 𝐹𝜅(𝑑(𝑥, 𝑧); 𝑑(𝑥, 𝑜), 𝑑(𝑧, 𝑜))
= 𝜌𝑜(𝑥, 𝑧).

Remark 14. One would think that for 𝜅 > 0 one could get a similar result
by replacing the above formula in Theorem 13 with the spherical version.
However this is not the case as the following counterexample shows: Consider
a triangle in the plane ℝ2 as shown in Figure 4.4. We can calculate:

𝜌𝑜(𝑥, 𝑧) =
sin(2𝑡

2
)

cos(√2𝑡
2

)
2 =

sin (𝑡)

cos(√2𝑡
2

)
2
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and

𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧) = 2
sin( 𝑡

2
)

cos(√2𝑡
2

) cos( 𝑡
2
)

.

Let

𝑓 (𝑡) ∶= 𝜌𝑜(𝑥, 𝑧) − 𝜌𝑜(𝑥, 𝑦) − 𝜌𝑜(𝑦, 𝑧) =
sin (𝑡)

cos(√2𝑡
𝑡

)
2 −

2 sin( 𝑡
2
)

cos(√2𝑡
2

) cos( 𝑡
2
)

=
sin (𝑡) cos( 𝑡

2
) − 2 sin( 𝑡

2
) cos(√2𝑡

2
)

cos(√2𝑡
2

)
2
cos( 𝑡

2
)

= sec⎛⎜
⎝

𝑡
√2

⎞⎟
⎠

⎛⎜
⎝
sin(𝑡) sec⎛⎜

⎝
𝑡

√2
⎞⎟
⎠

− 2 tan(
𝑡
2

)⎞⎟
⎠

.

It is easy to see that 𝑓 (0) = 0 and that the Taylor series expansion at 𝑡 = 0 is:

𝑡5

96
+

𝑡7

180
+

181𝑡9

92160
+

5633𝑡11

9676800
+ 𝑂(𝑡13).

In particular this function is positive for small positive 𝑡. This is a contradic-
tion to the triangle inequality. Therefore the approach as above does not work
in the spherical case. However we will later see that a similar theorem holds
for CBB-spaces.

Lemma 4 (The proof follows the sketch in [LS07]). Let (𝑋, 𝑑) be
a CAT(𝜅)-space for 𝜅 < 0, 𝑜 ∈ 𝑋 a base point. And let 𝜌𝑜(𝑥, 𝑦) =
𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑝, 𝑥), 𝑑(𝑝, 𝑦)). Then 𝜌𝑜 satisfies the Ptolemaic inequality for
any 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝑋:

𝜌𝑜(𝑥1, 𝑥3)𝜌𝑜(𝑥2, 𝑥4) ≤ 𝜌𝑜(𝑥1, 𝑥2)𝜌𝑜(𝑥3, 𝑥4) + 𝜌𝑜(𝑥1, 𝑥4)𝜌𝑜(𝑥2, 𝑥3).

Proof. 𝑋 satisfies theCAT(𝜅) 4-point condition (Proposition 1.11, p. 164
in [BH99]). This means for any 4-tuple of points (𝑥1, 𝑥2, 𝑥3, 𝑥4) in 𝑋
there exists a 4-tuple of comparison points ( ̄𝑥1, ̄𝑥2, ̄𝑥3, ̄𝑥4) in (𝑀2

𝜅, ̄𝑑)
such that 𝑑(𝑥1, 𝑥2) = ̄𝑑( ̄𝑥1, ̄𝑥2), 𝑑(𝑥2, 𝑥3) = ̄𝑑( ̄𝑥2, ̄𝑥3), 𝑑(𝑥3, 𝑥4) = ̄𝑑( ̄𝑥3, ̄𝑥4),
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𝑑(𝑥4, 𝑥1) = ̄𝑑( ̄𝑥4, ̄𝑥1). And furthermore 𝑑(𝑥1, 𝑥3) ≤ ̄𝑑( ̄𝑥1, ̄𝑥3) and
𝑑(𝑥2, 𝑥4) ≤ ̄𝑑( ̄𝑥2, ̄𝑥4). Note that 𝐹𝜅( ̄𝑑( ̄𝑥, ̄𝑦), ̄𝑑( ̄𝑥, ̄𝑜), ̄𝑑( ̄𝑦, ̄𝑜)) = ‖𝑥 − 𝑦‖.
Furthermore we know that the Euclidean metric satisfies the Ptole-
maic inequality:

‖ ̄𝑥1 − ̄𝑥3‖ ⋅ ‖ ̄𝑥2 − ̄𝑥4‖ ≤ ‖ ̄𝑥1 − ̄𝑥2‖ ⋅ ‖ ̄𝑥3 − ̄𝑥4‖ + ‖ ̄𝑥1 − ̄𝑥4‖ ⋅ ‖ ̄𝑥2 − ̄𝑥3‖

This implies that:

sn𝜅(𝑑(𝑥1, 𝑥3)/2) sn𝜅(𝑑(𝑥2, 𝑥4)/2)
≤ sn𝜅( ̄𝑑( ̄𝑥1, ̄𝑥3)/2) sn𝜅( ̄𝑑( ̄𝑥2, ̄𝑥4)/2)
≤ sn𝜅( ̄𝑑( ̄𝑥1, ̄𝑥2)/2) sn𝜅( ̄𝑑( ̄𝑥3, ̄𝑥4)/2)
+ sn𝜅( ̄𝑑( ̄𝑥1, ̄𝑥4)/2) sn𝜅( ̄𝑑( ̄𝑥2, ̄𝑥3)/2)

= sn𝜅(𝑑(𝑥1, 𝑥2)/2) sn𝜅(𝑑(𝑥3, 𝑥4)/2)
+ sn𝜅(𝑑(𝑥1, 𝑥4)/2) sn𝜅(𝑑(𝑥2, 𝑥3)/2).

From this the claim follows.

Remark 15. Note that this still holds if one of the points is on the Gromov
boundary. Let (𝑋, 𝑑) be a CAT(𝜅)-space for 𝜅 < 0 with base point 𝑜 ∈
𝑋. And let 𝜌𝑜(𝑥, 𝑦) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑝, 𝑥), 𝑑(𝑝, 𝑦)). Then 𝜌𝑜 satisfies the
Ptolemaic inequality for any 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, 𝜔 ∈ 𝜕∞𝑋:

𝜌𝑜(𝑥1, 𝑥3)𝜌𝑜(𝑥2, 𝜔) ≤ 𝜌𝑜(𝑥1, 𝑥2)𝜌𝑜(𝑥3, 𝜔) + 𝜌𝑜(𝑥1, 𝜔)𝜌𝑜(𝑥2, 𝑥3).

This holds because we have

sn𝜅 (𝑑(𝑥1, 𝑥3)/2) sn𝜅 (𝑑(𝑥2, 𝜔𝑖)/2)
≤ sn𝜅 (𝑑(𝑥1, 𝑥2)/2) sn𝜅 (𝑑(𝑥3, 𝜔𝑖)/2)+sn𝜅 (𝑑(𝑥1, 𝜔𝑖)/2) sn𝜅 (𝑑(𝑥2, 𝑥3)/2) ,

for any 𝑖 ∈ ℕ, in particular it holds in the limit as well.

Lemma 5 (For the case 𝜅 = −1, the points 1.-3. and 5. are from The-
orem 1.1 (C-E) in [LS07]). Let (𝑋, 𝑑) be a CAT(𝜅)-space for 𝜅 < 0 and
let 𝜕∞𝑋 denote the boundary at infinity. Then we can extend the metrics
𝜌𝑜(𝑥, 𝑦) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑝, 𝑥), 𝑑(𝑝, 𝑦)) and 𝜌𝜔,𝑜(𝑥, 𝑦) = 𝐺𝜅(𝑑(𝑥, 𝑦), 𝐵(𝑥), 𝐵(𝑦))
(here 𝐵 is the Busemann function of 𝜔 normalized such that 𝐵(𝑜) = 0) to
the boundary at infinity and the following holds for 𝜉 , 𝜂 ∈ 𝜕∞𝑋 ⧵ {𝜔}:
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1.
𝜌𝜔,𝑜(𝜉 , 𝜂) = 𝑒−(𝜉|𝜂)𝜔,𝑜√−𝜅,

2.
𝜌𝑜(𝜉 , 𝜂) =

2 exp(−(𝜉 |𝜂)𝑜√−𝜅)
√−𝜅

,

3.

𝜌𝜔,𝑜(𝑥, 𝑦) =
2𝜌𝑜(𝑥, 𝑦)

𝜌𝑜(𝑥, 𝜔)𝜌𝑜(𝑦, 𝜔)√−𝜅
,

4.

𝜌𝑜(𝑜, 𝜂) =
1

√−𝜅

5. If 𝛾 ∶ (𝑋, 𝑑) → (𝑋, 𝑑) is an isometry, then 𝛾 ∶ (𝑋, 𝜌) → (𝑋, 𝜌) is a
Möbius-map where 𝜌 = 𝜌𝑜 or 𝜌 = 𝜌𝜔,𝑜.

Proof. Define 𝜌𝑜(𝑥, 𝜂) as the limit of some sequence {𝜂𝑖}𝑖 ⊂ 𝑋 converg-
ing to 𝜂:

𝜌𝑜(𝑥, 𝜂) = lim
𝑖→∞

𝜌𝑜(𝑥, 𝜂𝑖)

define furthermore

𝜌𝑜(𝜉 , 𝜂) = lim
𝑖→∞

𝜌𝑜(𝜉𝑖, 𝜂𝑖).

And analogously for 𝜌𝜔,𝑜. By a result of Bourdon ([Bou96] and Exer-
cise 3.18 in [BH99]) those definitions do not depend on the choice of
sequences and the limit always exists (also see [FS11]). We have:

𝜌𝑜(𝑥, 𝜂) = lim
𝑖→∞

sn𝜅(𝑑(𝑥, 𝜂𝑖)/2)
cs𝜅(𝑑(𝑥, 𝑜)/2) cs𝜅(𝑑(𝜂𝑖, 𝑜)/2)

= lim
𝑖→∞

exp(𝑑(𝑥, 𝜂𝑖)√−𝜅/2)
cs𝜅(𝑑(𝑥, 𝑜)/2) exp(𝑑(𝜂𝑖, 𝑜)√−𝜅/2)√−𝜅

= lim
𝑖→∞

exp(√−𝜅
2 (𝑑(𝑥, 𝜂𝑖) − 𝑑(𝜂𝑖, 𝑜)))
cs𝜅(𝑑(𝑥, 𝑜)/2)√−𝜅

=
exp(√−𝜅

2 𝐵𝜔,𝑜(𝑥))
cs𝜅(𝑑(𝑥, 𝑜)/2)√−𝜅

.
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From this it follows that

𝜌𝜔,𝑜(𝑥, 𝑦) =
2 sn𝜅(𝑑(𝑥, 𝑦)/2)√−𝜅

exp(√−𝜅𝐵𝜔,𝑜(𝑥)/2) exp(√−𝜅𝐵𝜔,𝑜(𝑦)/2)

=
2𝜌𝑜(𝑥, 𝑦)

𝜌𝑜(𝑥, 𝜔)𝜌𝑜(𝑦, 𝜔)√−𝜅
.

For 𝜉 ≠ 𝜂 we have

𝜌𝑜(𝜉 , 𝜂) = lim
𝑖→∞

sn𝜅(𝑑(𝜉𝑖, 𝜂𝑖)/2)
cs𝜅(𝑑(𝜉𝑖, 𝑜)/2) cs𝜅(𝑑(𝜂𝑖, 𝑜)/2)

= lim
𝑖→∞

2 exp(𝑑(𝜉𝑖, 𝜂𝑖)√−𝜅/2)
exp(𝑑(𝜉𝑖, 𝑜)√−𝜅/2) exp(𝑑(𝜂𝑖, 𝑜)√−𝜅/2)√−𝜅

= lim
𝑖→∞

2 exp(
√−𝜅

2
(𝑑(𝜉𝑖, 𝜂𝑖) − 𝑑(𝜉𝑖, 𝑜) − 𝑑(𝜂𝑖, 𝑜)))

1
√−𝜅

= lim
𝑖→∞

2 exp(−√−𝜅(𝜉𝑖|𝜂𝑖)𝑜)
1

√−𝜅

=
2𝑒−(𝜉|𝜂)𝑜√−𝜅

√−𝜅
.

We furthermore get that for 𝜉 , 𝜂 ∈ 𝜕∞𝑋 ⧵ {𝜔}:

𝜌𝜔,𝑜(𝜉 , 𝜂) =
2𝜌𝑜(𝜉 , 𝜂)

𝜌𝑜(𝜉 , 𝜔)𝜌𝑜(𝜂, 𝜔)√−𝜅

=
𝑒−(𝜉|𝜂)𝑜⋅√−𝜅

𝑒−(𝜉|𝜔)𝑜⋅√−𝜅 ⋅ 𝑒−(𝜂|𝜔)𝑜⋅√−𝜅

= 𝑒√−𝜅(−(𝜉|𝜂)𝑜+(𝜉|𝜔)𝑜+(𝜂|𝜔)𝑜)

= 𝑒−(𝜉|𝜂)𝜔,𝑜√−𝜅.
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Let 𝜂 ∈ 𝜕∞𝑋 then we have2

𝜌𝑜(𝑜, 𝜂) = lim
𝑖→∞

sn𝜅(𝑑(𝑜, 𝜂𝑖)/2)
cs𝜅(𝑑(𝑜, 𝑜)/2) cs𝜅(𝑑(𝑜, 𝜂𝑖)/2)

(4.11)

= lim
𝑖→∞

sn𝜅(𝑑(𝑜, 𝜂𝑖)/2)
cs𝜅(𝑑(𝑜, 𝜂𝑖)/2)

(4.12)

= lim
𝑖→∞

sinh(√−𝜅𝑑(𝑜, 𝜂𝑖)/2)
cosh(√−𝜅𝑑(𝑜, 𝜂𝑖)/2)√−𝜅

(4.13)

=
1

√−𝜅
. (4.14)

Similarly we calculate

𝜌𝜔,𝑜(𝑜, 𝜂) = lim
𝑖→∞

2 sn𝜅(𝑑(𝑜, 𝜂𝑖)/2)
exp(√−𝜅𝐵𝜔,𝑜(𝑜)) exp(√−𝜅𝐵𝜔,𝑜(𝜂𝑖))

= lim
𝑖→∞

2 sinh(√−𝜅𝑑(𝑜, 𝜂𝑖)/2)
√−𝜅 exp(𝐵𝜔,𝑜(𝜂𝑖))

.

Given a isometry 𝛾 ∶ (𝑋, 𝑑) → (𝑋, 𝑑) we have:

cr((𝑥, 𝑦, 𝑧, 𝑤), 𝜌𝑜) =
𝜌𝑜(𝑥, 𝑧)𝜌𝑜(𝑦, 𝑤)
𝜌𝑜(𝑥, 𝑦)𝜌𝑜(𝑧, 𝑤)

=
sn𝜅(𝑑(𝑥, 𝑧)/2) sn𝜅(𝑑(𝑦, 𝑤)/2)
sn𝜅(𝑑(𝑥, 𝑦)/2) sn𝜅(𝑑(𝑧, 𝑤)/2)

.

In particular, the cs𝜅(𝑑(𝑥, 𝑜)/2) terms all cancel out and it follows that

cr((𝑥, 𝑦, 𝑧, 𝑤), 𝜌𝑜) = cr((𝛾(𝑥), 𝛾(𝑦), 𝛾(𝑧), 𝛾(𝑤)), 𝜌𝑜).

2 Note that this does not depend on the sequence chosen regardless of the properties
of the space as long as 𝜂𝑖 → ∞(𝑖 → ∞).
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4.3.3 CBB(𝜅)-Spaces for 𝜅 > 0

For spaces that have curvature bounded from below in the sense of
Alexandrov transforming the metric using the transformation given
by the function 𝐹 still results in a new metric. In particular we have
the following result.

Theorem 14. Let (𝑋, 𝑑) be a complete intrinsic CBB(𝜅)-space with 𝜅 > 0,
then

𝜌𝑜(𝑥, 𝑦) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜))

is a metric.

This result answers a question3 originally asked by Marc Lischka.
The proof uses the following version of the Kirszbraun theorem

which can be found in [LS97] and [AKP10]:

Lemma 6 (Kirszbraun theorem). Let (𝑋, 𝑑) be a complete intrinsic space.
Then (𝑋, 𝑑) is CBB(𝜅) if and only if for any 3-point set 𝑉3 ⊂ 𝑋 and any
4-point set 𝑉4 ⊃ 𝑉3 in 𝑋, any short map 𝑓 ∶ 𝑉3 → 𝑀2

𝜅 can be extended to a
short map 𝐹 ∶ 𝑉4 → 𝑀2

𝜅 (so that 𝑓 = 𝐹|𝑉3).

We also need a bound on the diameter of 𝑋 which follows from the
CBB property.

Theorem 15 (Theorem 10.4.1 in [BBI01]). Let (𝑋, 𝑑) be a complete in-
trinsic CBB(𝜅) space with 𝜅 > 0, then diam(𝑋) ≤ 𝜋

√𝜅 .

Proof of Theorem 14. Let 𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑋. We want to show that 𝜌𝑜(𝑥, 𝑧) ≤
𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧). Take the comparison triangle ( ̄𝑥, ̄𝑧, ̄𝑜) in the model
space (𝑀2

𝜅, ̄𝑑). By the above lemma we can find a comparison point
̄𝑦 such that 𝑑(𝑥, 𝑦) ≥ ̄𝑑( ̄𝑥, ̄𝑦), 𝑑(𝑧, 𝑦) ≥ ̄𝑑( ̄𝑧, ̄𝑦) and 𝑑(𝑜, 𝑦) ≥ ̄𝑑( ̄𝑜, ̄𝑦) and

for the other distances we have equality. By Proposition 20 we know

3 Question: For which combinations of 𝜅 and 𝜅′ is

𝜌𝑜(𝑥, 𝑦) = 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜))

a metric on 𝑀𝑛
𝜅′?
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that the triangle inequality holds for 𝜌𝑜 in the model space, therefore
we have:

𝜌𝑜(𝑥, 𝑧) = ̄𝜌𝑜( ̄𝑥, ̄𝑧)
≤ ̄𝜌𝑜( ̄𝑥, ̄𝑦) + ̄𝜌𝑜( ̄𝑦, ̄𝑧)

=
sn𝜅 (

̄𝑑( ̄𝑥, ̄𝑦)
2

)

cs𝜅 (
̄𝑑( ̄𝑥, ̄𝑜)
2

) cs𝜅 (
̄𝑑( ̄𝑦, ̄𝑜)
2

)
+

sn𝜅 (
̄𝑑( ̄𝑦, ̄𝑧)
2

)

cs𝜅 (
̄𝑑( ̄𝑦, ̄𝑜)
2

) cs𝜅 (
̄𝑑( ̄𝑧, ̄𝑜)
2

)

≤
sn𝜅 (𝑑(𝑥,𝑦)

2
)

cs𝜅 (𝑑(𝑥,𝑜)
2

) cs𝜅 (𝑑(𝑦,𝑜)
2

)
+

sn𝜅 (𝑑(𝑦,𝑧)
2

)

cs𝜅 (𝑑(𝑦,𝑜)
2

) cs𝜅 (𝑑(𝑧,𝑜)
2

)

≤ 𝜌𝑜(𝑥, 𝑦) + 𝜌𝑜(𝑦, 𝑧).

In the second inequality we used the bound on the diameter of 𝑋.
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4.3.4 𝛿-Hyperbolic Spaces

Let (𝑋, 𝑑) be a metric space. For 𝑜 ∈ 𝑋 define4:

𝜌(𝑥, 𝑦) ∶= 𝐹−1(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)) =
sinh(𝑑(𝑥, 𝑦)/2)

cosh(𝑑(𝑜, 𝑥)/2) cosh(𝑑(𝑜, 𝑦)/2)
.

For an arbitrary metric space (𝑋, 𝑑), 𝜌 is not generally a metric.
However, one can apply a chain construction to try to get a metric ̄𝜌
out of 𝜌. Let ̄𝜌 be the metric5 constructed as follows

̄𝜌(𝑥, 𝑦) ∶= inf
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1),

where the infimum runs over all chains of finite length 𝑥 = 𝑥0, … , 𝑥𝑛 =
𝑦 of points in 𝑋. In case that (𝑋, 𝑑) is a 𝛿-hyperbolic metric space with
𝛿 < ln(2) we get that (𝑋, ̄𝜌) is a metric space and 𝜌 is bi-Lipschitz to

̄𝜌. Furthermore we can Cauchy complete the metric and extend it to
�̄� = 𝑋 ∪ 𝜕𝑋. By abuse of notation we also write ̄𝜌 for the completed
metric.

Theorem 16. Let (𝑋, 𝑑) be a 𝛿-hyperbolic metric space with 0 ≤ 𝛿 < ln(2).
Then ̄𝜌 is a metric and ̄𝜌 ≤ 𝜌 ≤ 𝜆 ̄𝜌 for some 𝜆 ≥ 1. Furthermore (for any 𝛿)
we have 𝜔 ∈ 𝜕𝑋 if and only if ̄𝜌(𝑜, 𝜔) = 1. And as sets 𝜕∞𝑋 = 𝜕𝑋.

Remark 16. This result does not hold for 𝛿-hyperbolic spaces with 𝛿 > ln(2).
In particular, in the appendix we construct an example of a 𝛿-hyperbolic metric
space with 𝛿 > ln(2) where the metrics 𝜌 and ̄𝜌 can not be bi-Lipschitz to
each other. See Section A.3.

4 We drop the specification of the base point from the metric whenever it is clear from
the context. Also in this section generally 𝜅 = −1.

5 Metrizing a semimetric (metric without triangle inequality) or premetric (semimetric
where 𝑑(𝑥, 𝑦) = 0 for 𝑥 ≠ 𝑦 is allowed) using this construction always results in
at least a pseudo-metric (triangle inequality but 𝑑(𝑥, 𝑦) = 0 allowed). In this case
however we always get a metric. As we will see later in Lemma 13 and Theorem 17.
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outline of proof. The proof of Theorem 16 is quite involved. We
give a short overview of all the elements and parts of the proof. One
can show that in a 𝛿-hyperbolic metric space (𝑋, 𝑑) with 𝛿 < ln(2)
there exists some constant 𝑠0 > 0 such that whenever the points
𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑋 have pairwise distance greater than 𝑠0, then the largest
two members 𝑚0, 𝑚1 of the triple (𝜌(𝑥, 𝑦), 𝜌(𝑦, 𝑧), 𝜌(𝑧, 𝑥)) satisfy 1

2 ≤
𝑚0
𝑚1

≤ 2 (Lemma 8). Such a triple is said to satisfy the 2-quasi-metric
inequality. In turn by a result of Frink (Lemma 9) points forwhich each
triple satisfies the above inequality can be approximated as follows:
Given a chain of points 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 in a semimetric space (𝑋, 𝑑)
(the spacemay not satisfy the triangle inequality)𝑋 such that all points
satisfy the 2-quasi-metric inequality, one can calculate the distance
between 𝑥 and 𝑦 as:

1
4

𝑑(𝑥, 𝑦) ≤
𝑛−1
∑
𝑖=0

𝑑(𝑥𝑖, 𝑥𝑖+1).

In particular in a 𝛿-hyperbolic space with 𝛿 < ln(2), this allows one
to approximate the distances in the 𝜌 semimetric given the condition
that all involved points have pairwise distances (and distances to 𝑜),
greater than 𝑠0 in the metric 𝑑. For points 𝑥, 𝑦 ∈ 𝑋 that are close
together in the metric 𝑑 (i.e., 𝑑(𝑥, 𝑦) ≤ 𝑠), it turns out that regardless
of the metric space (𝑋, 𝑑), there exists some constant 𝜇1(𝑠) depending
only on 𝑠 such that we can approximate ̄𝜌 by ̄𝜌(𝑥, 𝑦) ≥ 𝜇1(𝑠)𝜌(𝑥, 𝑦)
(Lemma 13). A similar result can be constructed for points 𝑥, 𝑦, 𝑧 ∈ 𝑋
such that 𝑑(𝑥, 𝑦) ≤ 𝑠 and 𝑑(𝑥, 𝑧) > 𝑠, in this case there also exists a
constant 𝜇2(𝑠) > 0 and we get the following inequality (Lemma 15):

𝜇2(𝑠)𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧).

For points that have a large radial part (the distance from the base
point), we can approximate 𝜌 by 𝜌rad which is the pseudo-metric result-
ing from constructing 𝜌 using 𝑑rad(𝑥, 𝑦) = |𝑑(𝑥, 𝑜)−𝑑(𝑦, 𝑜)| instead of 𝑑.
Because this satisfies (Lemma 10) the triangle inequality, this allows a
direct calculation in those cases. The idea of the proof of Theorem 16
is now as follows: Let (𝑋, 𝑑) be a 𝛿-hyperbolic metric space (𝑋, 𝑑) with
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𝑥 = 𝑤0

𝑥1
𝑧0

𝑤1

𝑧1

𝑤2

𝑧2

Figure 4.5: Subdivision of chain

𝛿 < ln(2) a base point 𝑜 ∈ 𝑋 and a chain 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦. If there is
at least one point of the chain close to the base point (𝑑(𝑜, 𝑥𝑘) ≤ 𝑠0)
we can approximate by either Lemma 13 or using the radial form of
the metric. In the other case we know that 𝑑(𝑜, 𝑥𝑖) > 𝑠0 for any index 𝑖.
We then subdivide our chain in such a way that we have sub-chains
of length ≤ 𝑠0 and we choose the sub-indices such that we take the
maximal possible indices (e.g.,if we end the sub-chain at any later
index it is longer than 𝑠0). See also Figure 4.5. We label the points
beginning and ending such sub-chains with 𝑤𝑖 and 𝑧𝑖. We then have
𝑑(𝑤𝑖, 𝑧𝑖) ≤ 𝑠0 and 𝑑(𝑤𝑖, 𝑤𝑗) > 𝑠0 for 𝑖 ≠ 𝑗. We can then use a combina-
tion of the results (Lemma 13 and Lemma 15) to simplify the whole
chain such that all remaining points have distance greater than 𝑠0.
Then one can apply Frink’s result (Lemma 9) to get ̄𝜌(𝑥, 𝑦) ≥ 𝜆𝜌(𝑥, 𝑦),
which completes the proof.

Lemma 7. For every 𝐶 > 0 there exists a 𝑐0 > 0 such that for 𝑎, 𝑏, 𝑐, 𝑑 > 𝑐0
whenever sinh(𝑎) cosh(𝑏) ≥ sinh(𝑐) cosh(𝑑) then 𝑎 + 𝑏 + 𝐶 ≥ 𝑐 + 𝑑.
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Proof. We calculate

sinh(𝑎) cosh(𝑏) =
1
4

(exp(𝑎) − exp(−𝑎))(exp(𝑏) + exp(−𝑏))

=
1
4
exp(𝑎 + 𝑏) (1 + exp(−2𝑏) − exp(−2𝑎) − exp(−2𝑎 − 2𝑏))

≤
1
4
exp(𝑎 + 𝑏) (1 + exp(−2𝑏))

≤
1
4
exp(𝑎 + 𝑏) (1 + exp(−2𝑐0)) .

Furthermore

sinh(𝑐) cosh(𝑑) =
1
4

(exp(𝑐) − exp(−𝑑))(exp(𝑐) + exp(−𝑑))

=
1
4
exp(𝑐 + 𝑑) (1 + exp(−2𝑑) − exp(−2𝑐) − exp(−2𝑐 − 2𝑑))

≥
1
4
exp(𝑐 + 𝑑) (1 − exp(−2𝑐) − exp(−2𝑐 − 2𝑑))

≥
1
4
exp(𝑐 + 𝑑) (1 − exp(−2𝑐0) − exp(−4𝑐0)) .

By taking the logarithm of the two inequalities we therefore get

ln(
1
4

)(𝑎+𝑏) ln(1+exp(−2𝑐0)) ≥ ln(
1
4

)(𝑐+𝑑) ln(1−exp(−2𝑐0)−exp(−4𝑐0))

and
𝐶 = ln(

1 + exp(−2𝑐0)
1 − exp(−2𝑐0) − exp(−4𝑐0)

) > 0.

Note that

lim
𝑐0→∞

ln(
1 + exp(−2𝑐0)

1 − exp(−2𝑐0) − exp(−4𝑐0)
) = 0.

Definition 34. Let 𝐾 ≥ 1. A triple (𝑏1, 𝑏2, 𝑏3) ∈ ℝ3 of positive reals
satisfies the 𝐾-quasi-metric inequality if the two largest members of the
triple coincide up to a multiplicative error ≤ 𝐾. i.e. if

1
𝐾

≤
𝑎
𝑏

≤ 𝐾



78 metrizing the gromov closure

for the largest two elements 𝑎, 𝑏 in (𝑏1, 𝑏2, 𝑏3). We denote this by 𝑎 ≍ 𝑏 or
𝑎 ≍𝐾 𝑏.

Lemma 8 (This is based on Lemma 5.5 from [LS07], additional cases
had to be considered for the proof to be complete). Let (𝑋, 𝑑) be a 𝛿-
hyperbolic space, with 0 ≤ 𝛿 < ln(2). There exists 𝑠0 > 0 with the following
property: Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that

𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜), 𝑑(𝑧, 𝑜), 𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑥, 𝑧) ≥ 𝑠0,

then (𝜌(𝑥, 𝑦), 𝜌(𝑦, 𝑧), 𝜌(𝑧, 𝑥)) satisfies the 2-quasi-metric inequality.

Proof. Without loss of generality assume that 𝜌(𝑥, 𝑦) ≥ 𝜌(𝑦, 𝑧) ≥
𝜌(𝑧, 𝑥). This is equivalent to

sinh(
𝑑(𝑥, 𝑦)

2
) cosh(

𝑑(𝑜, 𝑧)
2

) ≥ sinh(
𝑑(𝑦, 𝑧)

2
) cosh(

𝑑(𝑜, 𝑥)
2

)

≥ sinh(
𝑑(𝑧, 𝑥)

2
) cosh(

𝑑(𝑜, 𝑦)
2

) .

We know that for any 𝜁 > 1 there exists 𝑠0 > 0 such that for all
𝑡 ≥ 𝑠0 we have

1
𝜁

1
2
exp(𝑡) ≤ sinh(𝑡) ≤ 𝜁

1
2
exp(𝑡)

with 𝜁 = 1
1−exp(−2𝑠0) because of sinh(𝑡) = 1

2(exp(𝑡) − exp(−𝑡)) =
1
2 exp(𝑡)(1 − exp(−2𝑡)). And a similar inequality holds for cosh(𝑥)
with 𝜁 ′ = (1 + exp(−2𝑡)):

1
𝜁 ′

1
2
exp(𝑥) ≤ cosh(𝑡) ≤ 𝜁 ′ 1

2
exp(𝑡)

because of

cosh(𝑡) =
1
2

(exp(𝑡) + exp(−𝑡)) =
1
2
exp(𝑡)(1 + exp(−2𝑡)).
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We can combine the above to get

𝜁−2𝜁 ′−2
exp(𝑑(𝑥,𝑦)

2
) exp(𝑑(𝑜,𝑧)

2
)

exp(𝑑(𝑦,𝑧)
2

) exp(𝑑(𝑜,𝑥)
2

)
≤

sinh(𝑑(𝑥,𝑦)
2

) cosh(𝑑(𝑜,𝑧)
2

)

sinh(𝑑(𝑦,𝑧)
2

) cosh(𝑑(𝑜,𝑥)
2

)

≤ 𝜁2𝜁 ′2
exp(𝑑(𝑥,𝑦)

2
) exp(𝑑(𝑜,𝑧)

2
)

exp(𝑑(𝑦,𝑧)
2

) exp(𝑑(𝑜,𝑥)
2

)

and therefore

𝜁−2𝜁 ′−2 exp(
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥)

2
)

≤
sinh(𝑑(𝑥,𝑦)

2
) cosh(𝑑(𝑜,𝑧)

2
)

sinh(𝑑(𝑦,𝑧)
2

) cosh(𝑑(𝑜,𝑥)
2

)

≤ 𝜁2𝜁 ′2 exp(
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥)

2
) .

We now need to consider the following possible cases:

1. If 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) ≥ 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) ≥ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) then by
the 𝛿-hyperbolicity of 𝑋, the largest two entries differ by at most
2𝛿. Therefore

𝜁2𝜁 ′2 exp(
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥)

2
) ≤ 𝜁2𝜁 ′2 exp(𝛿).

2. If 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) ≥ 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) ≥ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) or
𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) ≥ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) ≥ 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) then

𝜁2𝜁 ′2 exp(
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥)

2
) ≤ 𝜁2𝜁 ′2.

3. If 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) ≥ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) ≥ 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) then by
the previous lemma 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) + 𝐶 ≥ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) and
therefore

𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥) ≤ 2𝛿 + 𝐶.
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4. If 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) ≥ 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) ≥ 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) then
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) − 𝑑(𝑦, 𝑧) −
𝑑(𝑜, 𝑥) and by the previous lemma:

𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥) ≤ 𝐶.

5. If 𝑑(𝑥, 𝑧) + 𝑑(𝑜, 𝑦) ≥ 𝑑(𝑦, 𝑧) + 𝑑(𝑜, 𝑥) ≥ 𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) then

𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥) ≤ 0.

In summary we get

𝜁2𝜁 ′2 exp(
𝑑(𝑥, 𝑦) + 𝑑(𝑜, 𝑧) − 𝑑(𝑦, 𝑧) − 𝑑(𝑜, 𝑥)

2
)

≤ 𝜁2𝜁 ′2 exp(
2𝛿 + 𝐶

2
) = 𝜁2𝜁 ′2 exp(𝛿 +

𝐶
2

) .

Because we can choose 𝑠0 such that 𝐶 > 0 becomes arbitrarily close to
0 and 𝜁 , 𝜁 ′ > 1 arbitrarily close to 1, this completes the proof.

Remark 17. We show in the appendix (Corollary 4) that ln(2) is optimal.

The following lemma is due to Frink [Fri37]:

Lemma 9. Let (𝑋, 𝜌) be a space with a distance function satisfying the
following conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝜌(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦,

2. 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥),

3. For any 𝜖 > 0, 𝜌(𝑥, 𝑦) < 𝜖 and 𝜌(𝑦, 𝑧) < 𝜖 together imply 𝜌(𝑥, 𝑧) <
2𝜖.

Then the following holds for any chain 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 in 𝑋:

1
4

𝜌(𝑥, 𝑦) ≤
1
2

𝜌(𝑥, 𝑥1) + 𝜌(𝑥1, 𝑥2) + ⋯ + 𝜌(𝑥𝑛−2, 𝑥𝑛−1) +
1
2

𝜌(𝑥𝑛−1, 𝑦)

≤
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1).



4.3 results 81

Remark 18. In particular this lemma applies to a distance function satisfying
the 2-quasi-metric-inequality.

Remark 19. Note that the lemma does no longer work if we only have
𝜌(𝑥, 𝑧) < 𝜆𝜖 for 𝜆 > 2 in the third condition above. To see this consider the
following example: Consider the graph constructed as follows. Start with
two vertices 𝑣0, 𝑣1 and set 𝑑(𝑣0, 𝑣1) = 𝑥0. Then connect both vertices to
a third vertex 𝑣2 to form a triangle such that the new sides have distance
𝑑(𝑣0, 𝑣2) = 𝑑(𝑣1, 𝑣2) = 𝑥1, continue in the same fashion extending each
side with vertices to form triangles. If we let

𝑥0 = 1, 𝑥1 =
1

(2 + 𝜇)
, 𝑥2 =

1
(2 + 𝜇)2 , … , 𝑥𝑖 =

1
(2 + 𝜇)𝑖 , …

then the condition would be satisfied for 𝜆 = 2 + 𝜇 and 𝜇 > 0. However
applying the chain construction we get:

inf∑ 𝑑(𝑣𝑖, 𝑣𝑖+1) ≤ lim
𝑛→∞

2𝑛 1
(2 + 𝜇)𝑛 = 0.

Proposition 22. Let 𝑋 = (𝑋, 𝑑) be a metric space. Fix 𝑜 ∈ 𝑋. Let
𝑑rad(𝑥, 𝑦) = |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)|. Then (𝑋, 𝑑rad) is a pseudo-metric space.

Proof. Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 then we calculate:

𝑑rad(𝑥, 𝑦) + 𝑑rad(𝑦, 𝑧) = |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)|.

The following cases are possible:

1. |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| = 𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑦, 𝑜) −
𝑑(𝑧, 𝑜): This case is trivial.

2. |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| = 𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜) −
𝑑(𝑦, 𝑜): Here we know that wemust have 𝑑(𝑦, 𝑜) ≤ 𝑑(𝑥, 𝑜). There-
fore |𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)| ≥ |𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)|.

3. |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| = 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) −
𝑑(𝑧, 𝑜): We know thatwemust have 𝑑(𝑦, 𝑜) ≥ 𝑑(𝑥, 𝑜) and 𝑑(𝑦, 𝑜) ≥
𝑑(𝑧, 𝑜) and therefore either 𝑑(𝑦, 𝑜) ≥ 𝑑(𝑧, 𝑜) ≥ 𝑑(𝑥, 𝑜) or 𝑑(𝑦, 𝑜) ≥
𝑑(𝑥, 𝑜) ≥ 𝑑(𝑧, 𝑜). But then the result follows from either |𝑑(𝑦, 𝑜)−
𝑑(𝑥, 𝑜)| ≥ |𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)| or |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| ≥ |𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)|.
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4. |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + |𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| = 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜) −
𝑑(𝑦, 𝑜): This case is trivial.

The remaining cases are

𝑑rad(𝑥, 𝑜) + 𝑑rad(𝑜, 𝑦) = 𝑑(𝑥, 𝑜) + 𝑑(𝑜, 𝑦)
≥ 𝑑(𝑥, 𝑦)
≥ |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)|
= 𝑑rad(𝑥, 𝑦),

and

𝑑rad(𝑜, 𝑥) + 𝑑rad(𝑥, 𝑦) = 𝑑(𝑜, 𝑥) + |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)|
≥ 𝑑(𝑦, 𝑜)
= 𝑑rad(𝑜, 𝑦).

Therefore (𝑋, 𝑑rad) is a pseudo-metric space.

Lemma 10. Let 𝑋 = (𝑋, 𝑑) be a metric space. Fix 𝑜 ∈ 𝑋 and 𝜅 < 0. Let
𝑑rad(𝑥, 𝑦) = |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| be the radial pseudo-metric. Then

𝜌rad(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑rad(𝑥, 𝑦); 𝑑rad(𝑥, 𝑜), 𝑑rad(𝑦, 𝑜))

is a pseudo-metric.

Proof. We have to show that:

sn𝜅 ( |𝑑(𝑥,𝑜)−𝑑(𝑧,𝑜)|
2

)

cs𝜅 (𝑑(𝑥,𝑜)
2

) cs𝜅 (𝑑(𝑧,𝑜)
2

)
≤

sn𝜅 ( |𝑑(𝑥,𝑜)−𝑑(𝑦,𝑜)|
2

)

cs𝜅 (𝑑(𝑥,𝑜)
2

) cs𝜅 (𝑑(𝑦,𝑜)
2

)
+

sn𝜅 ( |𝑑(𝑦,𝑜)−𝑑(𝑧,𝑜)|
2

)

cs𝜅 (𝑑(𝑦,𝑜)
2

) cs𝜅 (𝑑(𝑧,𝑜)
2

)
.

By multiplying by cs𝜅(𝑑(𝑥, 𝑜)) cs𝜅(𝑑(𝑦, 𝑜)) cs𝜅(𝑑(𝑧, 𝑜)), we can rewrite
this as follows:

sn𝜅 (
|𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)|

2
) cs𝜅 (

𝑑(𝑦, 𝑜)
2

)

≤ sn𝜅 (
|𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)|

2
) cs𝜅 (

𝑑(𝑧, 𝑜)
2

)+sn𝜅 (
|𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)|

2
) cs𝜅 (

𝑑(𝑥, 𝑜)
2

) .
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We can further rewrite this by using the property that for any two
𝛼, 𝛽 ∈ ℝ it holds that sn𝑘(𝛼) cs𝜅(𝛽) = 1

2(sn𝜅(𝛼+𝛽)+sn𝜅(𝛼−𝛽)). This
gives us the following inequality:

sn𝜅 (
|𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)| + 𝑑(𝑦, 𝑜)

2
)+sn𝜅 (

|𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)| − 𝑑(𝑦, 𝑜)
2

)

≤ sn𝜅 (
|𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| + 𝑑(𝑧, 𝑜)

2
)+sn𝜅 (

|𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| − 𝑑(𝑧, 𝑜)
2

)

+sn𝜅 (
|𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| + 𝑑(𝑥, 𝑜)

2
)+sn𝜅 (

|𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)| − 𝑑(𝑥, 𝑜)
2

) .

(4.15)

We now consider the following cases:

1. If 𝑑(𝑥, 𝑜) ≥ 𝑑(𝑦, 𝑜) and 𝑑(𝑧, 𝑜) ≥ 𝑑(𝑦, 𝑜) we can assume without
loss of generality that 𝑑(𝑥, 𝑜) ≥ 𝑑(𝑧, 𝑜). In particular we get

sn𝜅 ( |𝑑(𝑥,𝑜)−𝑑(𝑧,𝑜)|
2

)

cs𝜅 (𝑑(𝑥,𝑜)
2

) cs𝜅 (𝑑(𝑧,𝑜)
2

)
≤

sn𝜅 ( |𝑑(𝑥,𝑜)−𝑑(𝑦,𝑜)|
2

)

cs𝜅 (𝑑(𝑥,𝑜)
2

) cs𝜅 (𝑑(𝑦,𝑜)
2

)
,

and we are done.
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2. If 𝑑(𝑥, 𝑜) ≥ 𝑑(𝑦, 𝑜) ≥ 𝑑(𝑧, 𝑜), we can simplify Equation 4.15 as
follows:

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑦, 𝑜)

2
)+sn𝜅 (

𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)
2

)

≤ sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜)

2
)+sn𝜅 (

𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)
2

)

+sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑥, 𝑜)

2
)+sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)
2

)

⟺

((((((((((((((((

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑦, 𝑜)

2
)+

((((((((((((((((

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)

2
)

≤ sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜)

2
)+

((((((((((((((((

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)

2
)

+
((((((((((((((((

sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑥, 𝑜)

2
)+sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)
2

)

⟺

0 ≤ sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜)

2
)+sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)
2

) .

This is true because

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜)

2
)

= − sn𝜅 (
−(𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) + 𝑑(𝑧, 𝑜))

2
)

= − sn𝜅 (
−𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜)

2
) .
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3. It remains to show the case 𝑑(𝑦, 𝑜) ≥ 𝑑(𝑥, 𝑜) ≥ (𝑧, 𝑜). In this case
we can again rewrite Equation 4.15 as follows:

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑦, 𝑜)

2
) + sn𝜅 (

𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)
2

)

≤ sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜)

2
) + sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)
2

)

+ sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) + 𝑑(𝑥, 𝑜)

2
) + sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)
2

)

⟺

sn𝜅 (
𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)

2
)

≤ sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜)

2
)

+ sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)

2
)

+ sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑧, 𝑜) − 𝑑(𝑥, 𝑜)

2
) .

This further simplifies to

0 ≤ 2 sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜)

2
)+2 sn𝜅 (

𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜)
2

) .

If 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) − 𝑑(𝑧, 𝑜) ≥ 0 we are done. Otherwise we have
to show that

0 ≤ 2 sn𝜅 (
𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜)

2
)−2 sn𝜅 (

𝑑(𝑥, 𝑜) + 𝑑(𝑧, 𝑜) − 𝑑(𝑦, 𝑜)
2

) .

This is truewhenever 𝑑(𝑦, 𝑜)−𝑑(𝑥, 𝑜)+𝑑(𝑧, 𝑜) ≥ 𝑑(𝑥, 𝑜)+𝑑(𝑧, 𝑜)−
𝑑(𝑦, 𝑜). Note that 𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜) ≤ 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑜) because of
the assumption of this case. Therefore we are done.

Note that in the other cases where some terms are zero, 𝜌rad also
satisfies the triangle inequality: Whenever 𝑑rad(𝑥, 𝑦) = 0 it follows that
𝑑(𝑥, 𝑜) = 𝑑(𝑦, 𝑜). In particular we get:

𝜌rad(𝑥, 𝑧) ≤ 𝜌rad(𝑥, 𝑦) + 𝜌rad(𝑦, 𝑧) = 0 + 𝜌rad(𝑥, 𝑧).
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Lemma 11. Let 𝑋 = (𝑋, 𝑑) be a metric space and 𝑜 ∈ 𝑋. Let 𝜅 < 0 and

𝜌(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)).

Furthermore let

𝜌rad(𝑥, 𝑦) ∶= 𝐹𝜅(|𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)|; 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)).

Let 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 be a chain between two points 𝑥, 𝑦 ∈ 𝑋. Let 𝑅 =
max𝑖{𝑑(𝑜, 𝑥𝑖)} and let 𝑘 ∈ {1, … , 𝑛}. Then the following holds:

1.
𝜌rad(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑦),

2.
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜌rad(𝑥, 𝑥𝑘) + 𝜌rad(𝑥𝑘, 𝑦),

3.
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥
𝑑(𝑥, 𝑦)/2
cs𝜅(𝑅/2)2 .

Proof. The first inequality follows directly from |𝑑(𝑥, 𝑜) − 𝑑(𝑦, 𝑜)| ≤
𝑑(𝑥, 𝑦). For the second one note that by Lemma 10,

𝜌rad(𝑥, 𝑥𝑘) + 𝜌rad(𝑥𝑘, 𝑦) ≤
𝑛−1
∑
𝑖=0

𝜌rad(𝑥𝑖, 𝑥𝑖+1).

The last inequality follows from the following calculation:
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥
𝑛−1
∑
𝑖=0

sn𝜅(𝑑(𝑥𝑖, 𝑥𝑖+1)/2)
cs𝜅(𝑅/2)2

≥
𝑛−1
∑
𝑖=0

𝑑(𝑥𝑖, 𝑥𝑖+1)/2
cs𝜅(𝑅/2)2

≥
𝑑(𝑥, 𝑦)/2
cs𝜅(𝑅/2)2 .

Here we used that 𝑡 ≤ sinh(𝑡) for 𝑡 ≥ 0.
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Remark 20. If (𝑋, 𝑑) is a bounded metric space with diam(𝑋) ≤ 𝜋
√𝜅 for

some 𝜅 > 0, then the following holds:

1.
𝜌rad(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑦),

2.
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜌rad(𝑥, 𝑥𝑘) + 𝜌rad(𝑥𝑘, 𝑦),

3.
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥
𝑑(𝑥, 𝑦)/2

𝐶 cs𝜅(𝑅/2)2 .

Where ∞ > 𝐶 > 0 is some constant only depending on 𝜅. This comes from
requiring 𝑡

𝐶 ≤ sin(𝑡) for all 𝑡 ∈ [0, 𝜋/2].

Lemma 12. We have the following relations:

1. For 0 ≤ 𝑎, 𝑏 and 𝜅 < 0 we have

cs𝜅(𝑎 + 𝑏) ≤ 2 cs𝜅(𝑎) cs𝜅(𝑏).

2. For 0 ≤ 𝑎, 𝑏 ≤ 𝜋
2√−𝜅 and 𝜅 > 0 we have:

cs𝜅(𝑎 + 𝑏) ≤ 2 cs𝜅(𝑎) cs𝜅(𝑏).

3. For 0 ≤ 𝑎, 𝑏, 0 < 𝑠 ≤ 𝑎 and 𝜅 < 0 we have:

sn𝜅(𝑎 + 𝑠) ≤ 2 cs𝜅(𝑠) sn𝜅(𝑎).

4. For 0 ≤ 𝑎, 𝑏 and 𝜅 < 0 we have: cs𝜅(𝑎 − 𝑠) ≥ 1
2 cs𝜅(𝑠) cs𝜅(𝑎).

5. For 0 ≤ 𝑎, 𝑏, 0 < 2𝑠 ≤ 𝑎 and 𝜅 < 0 we have:

sn𝜅(𝑎 − 𝑠) ≥
1

2 cs𝜅(𝑠)
sn𝜅(𝑎).
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Proof. Writing out the definitions we get:

2 cs𝜅(𝑎) cs𝜅(𝑏) = 2 cosh(√−𝜅𝑎) cosh(√−𝜅𝑏)

= 2 ⋅
𝑒√−𝜅𝑎 + 𝑒−√−𝜅𝑎

2
⋅

𝑒√−𝜅𝑏 + 𝑒−√−𝜅𝑏

2

= 2 ⋅
𝑒√−𝜅(𝑎+𝑏) + 𝑒√−𝜅(𝑎−𝑏) + 𝑒√−𝜅(𝑏−𝑎) + 𝑒√−𝜅(−𝑎−𝑏)

4

≥
𝑒√−𝜅(𝑎+𝑏) + 𝑒√−𝜅(−𝑎−𝑏)

2
= cs𝜅(𝑎 + 𝑏).

The other equations follow in a similar way.

In the following let

̄𝜌(𝑥, 𝑦) ∶= inf {
𝑛

∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ∣ 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦},

where the infimum is taken over all finite chains between x and y.

Lemma 13 (Lemma 5.3 in [LS07]). Let (𝑋, 𝑑) be a general metric space.
For all 𝑠 > 0 there exists 𝜇1(𝑠) > 0 such that for all 𝑥, 𝑦 ∈ 𝑋with 𝑑(𝑥, 𝑦) ≤ 𝑠
we have

̄𝜌(𝑥, 𝑦) ≥ 𝜇1(𝑠)𝜌(𝑥, 𝑦).

In particular for any 𝑥 ≠ 𝑦, ̄𝜌(𝑥, 𝑦) > 0.

Proof. Let 𝑥, 𝑦 ∈ 𝑋 and let 𝑟𝑥 = 𝑑(𝑜, 𝑥) and 𝑟𝑦 = 𝑑(𝑜, 𝑦). Without loss
of generality assume that 𝑟𝑥 ≤ 𝑟𝑦. Let 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 be a chain
from 𝑥 to 𝑦 and let 𝑅 = max𝑖{𝑑(𝑜, 𝑥𝑖)} and 𝑘 such that 𝑑(𝑜, 𝑥𝑘) = 𝑅.

Let 𝐹rad
𝜅 (𝑠, 𝑡) = 𝐹𝜅(|𝑠 − 𝑡|, 𝑠, 𝑡). Two cases are possible:
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1. 𝑅 ≥ 𝑟𝑦 + 𝑠: In this case we can apply the second inequality from
Lemma 11 to get
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜌rad(𝑥, 𝑥𝑘) + 𝜌rad(𝑥𝑘, 𝑦)

= 𝐹rad
𝜅 (𝑅, 𝑟𝑥) + 𝐹rad

𝜅 (𝑅, 𝑟𝑦)
≥ 𝐹rad

𝜅 (𝑟𝑥 + 𝑠, 𝑟𝑥) + 𝐹rad
𝜅 (𝑟𝑦 + 𝑠, 𝑟𝑦)

=
sn𝜅(𝑠/2)

cs𝜅(𝑟𝑥/2) cs𝜅((𝑟𝑥 + 𝑠)/2)
+

sn𝜅(𝑠/2)
cs𝜅(𝑟𝑦/2) cs𝜅((𝑟𝑦 + 𝑠)/2)

≥
sn𝜅(𝑠/2)

2 cs𝜅(𝑟𝑥/2) cs𝜅(𝑟𝑦/2) cs𝜅(𝑠/2)
+

sn𝜅(𝑠/2)
2 cs𝜅(𝑟𝑥/2) cs𝜅(𝑟𝑦/2) cs𝜅(𝑠)

= (
1

2 cs𝜅(𝑠/2)
+

1
2 cs𝜅(𝑠)

) 𝜌(𝑥, 𝑦)

≥
1

cs𝜅(𝑠)
𝜌(𝑥, 𝑦).

Note that from 𝑟𝑥+𝑠 ≥ 𝑟𝑥+𝑑(𝑥, 𝑦) ≥ 𝑟𝑦 weget (𝑟𝑦+𝑠)/2 ≤ 𝑟𝑥/2+𝑠
and by applying Lemma 12 we get

cs𝜅((𝑟𝑦 + 𝑠)/2) ≤ 2 cs𝜅(𝑟𝑥/2) cs𝜅(𝑠).

This was applied in the second last inequality above.
Note that this case still holds for 𝜅 > 0 if diam(𝑋) ≤ 𝜋

2√𝜅 .

2. 𝑅 ≤ 𝑟𝑦 + 𝑠: In the case that 𝑅 ≤ 𝑟𝑦 + 𝑠 we have 𝑟𝑥 ≤ 𝑟𝑦 and from
the triangle inequality we get 𝑅 ≤ 𝑟𝑦 + 𝑠 ≤ 𝑟𝑥 + 2𝑠. Applying
Lemma 12 we get cs𝜅(𝑅/2) ≤ 2 cs𝜅(𝑠) cs𝜅(𝑟𝑥/2) and cs𝜅(𝑅/2) ≤
2 cs𝜅(𝑠/2) cs𝜅(𝑟𝑦/2). We apply (3) from Lemma 11 and get:

𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥
𝑑(𝑥, 𝑦)/2
cs𝜅(𝑅/2)2

≥
𝑑(𝑥, 𝑦)/2

4 cs𝜅(𝑠) cs𝜅(𝑟𝑥/2) cs𝜅(𝑠/2) cs𝜅(𝑟𝑦/2)

≥
𝑑(𝑥, 𝑦)/2

4 cs𝜅(𝑠) cs𝜅(𝑠/2) sn𝜅(𝑑(𝑥, 𝑦)/2)
𝜌(𝑥, 𝑦).
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In particular we get:

𝜇1(𝑑(𝑥, 𝑦)) =

⎧{{{
⎨{{{⎩

1
cs𝜅(𝑑(𝑥, 𝑦))

, if 𝑅 ≥ 𝑟𝑦 + 𝑑(𝑥, 𝑦),
𝑑(𝑥, 𝑦)/2

4 cs𝜅(𝑑(𝑥, 𝑦)) cs𝜅(𝑑(𝑥, 𝑦)/2) sn𝜅(𝑑(𝑥, 𝑦)/2)
if 𝑅 < 𝑟𝑦 + 𝑑(𝑥, 𝑦).

In case that 𝜅 > 0 and diam(𝑋) ≤ 𝜋
2√𝜅 we still get:

𝜇1(𝑑(𝑥, 𝑦)) =

⎧{{{
⎨{{{⎩

1
cs𝜅(𝑑(𝑥, 𝑦))

, if 𝑅 ≥ 𝑟𝑦 + 𝑑(𝑥, 𝑦),
𝑑(𝑥, 𝑦)/2

4𝐶 cs𝜅(𝑑(𝑥, 𝑦)) cs𝜅(𝑑(𝑥, 𝑦)/2) sn𝜅(𝑑(𝑥, 𝑦)/2)
if 𝑅 < 𝑟𝑦 + 𝑑(𝑥, 𝑦),

where 𝐶 > 0 is some finite positive constant depending only on 𝜅.
We can therefore take (for 𝜅 < 0)

𝜇1(𝑠) = min{
1

cs𝜅(𝑠)
,

𝑠/2
4 cs𝜅(𝑠) cs𝜅(𝑠/2) sn𝜅(𝑠/2)

} =
𝑠/2

4 cs𝜅(𝑠) cs𝜅(𝑠/2) sn𝜅(𝑠/2)
.

Note that 𝜇1(𝑠) is decreasing in 𝑠 therefore it follows that for 𝑑(𝑥, 𝑦) ≤ 𝑠
we have

̄𝜌(𝑥, 𝑦) ≥ 𝜇1(𝑠)𝜌(𝑥, 𝑦).

The following theorem then follows directly from the previous lem-
mas:

Theorem 17 (Theorem 5.2 (A) in [LS97]). Let (𝑋, 𝑑) be a metric space
and 𝑜 ∈ 𝑋. Let 𝜅 < 0 and

𝜌(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)).

Then 𝜌 is symmetric, positive and metrizable. That is

̄𝜌(𝑥, 𝑦) = inf
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1),

where the infimum is taken over all sequences 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 (for all
𝑛 < ∞), is a metric.
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Lemma 14. Let 𝜅 > 0 and let (𝑋, 𝑑) be a metric space with diam(𝑋) ≤ 𝜋
√𝜅 .

Set
𝜌(𝑥, 𝑦) ∶= 𝐹𝜅(𝑑(𝑥, 𝑦); 𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜)).

Then 𝜌 is symmetric, positive and bi-Lipschitz-metrizable. That is

̄𝜌(𝑥, 𝑦) = inf
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1),

where the infimum is taken over all sequences 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 (for all
𝑛 < ∞), is a metric. Furthermore this new metric is bi-Lipschitz to 𝜌:

√𝜅
𝜋

𝜌 ≤ ̄𝜌 ≤ 𝜌.

Proof.
𝑛−1
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) =
𝑛−1
∑
𝑖=0

sn𝜅(𝑑(𝑥𝑖, 𝑥𝑖+1)/2)
cs𝜅(𝑑(𝑥𝑖, 𝑜)/2) cs𝜅(𝑑(𝑥𝑖+1, 𝑜)/2)

=
𝑛−1
∑
𝑖=0

sin(√𝜅𝑑(𝑥𝑖, 𝑥𝑖+1)/2)
√𝜅 cos(√𝜅𝑑(𝑥𝑖, 𝑜)/2) cos(√𝜅𝑑(𝑥𝑖+1, 𝑜)/2)

≥
1

√𝜅

𝑛−1
∑
𝑖=0

sin(√𝜅𝑑(𝑥𝑖, 𝑥𝑖+1)/2)

≥
√𝜅
𝜋

𝑛−1
∑
𝑖=0

𝑑(𝑥𝑖, 𝑥𝑖+1)/2

≥
√𝜅
𝜋

𝑑(𝑥, 𝑦).

Lemma 15 (Lemma 5.6 in [LS07]). Let 𝜅 < 0. For all 𝑠 > 0 there exists
𝜇2(𝑠) > 0, such that the following holds in an arbitrary metric space 𝑋. Let
𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑑(𝑥, 𝑦) ≤ 𝑠 and 𝑑(𝑥, 𝑧) > 𝑠. Then

𝜇2(𝑠)𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧).

Proof. Consider the two cases:
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1. 𝑑(𝑥, 𝑧) ≤ 2𝑠. In this case we can use Lemma 13 and take 𝜇2 =
𝜇1(2𝑠). Then we have

𝜇1(2𝑠)𝜌(𝑥, 𝑧) ≤ ̄𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧).

2. 𝑑(𝑥, 𝑧) > 2𝑠: Let 𝑟𝑥 = 𝑑(𝑜, 𝑥), 𝑟𝑦 = 𝑑(𝑜, 𝑦), 𝑟𝑧 = 𝑑(𝑜, 𝑧). We have
the following relations:

𝑠 + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) > 2𝑠.

Therefore we can apply Lemma 12 to get:

sn𝜅(𝑑(𝑦, 𝑧)/2) ≥
sn𝜅(𝑑(𝑦, 𝑧)/2 + 𝑠/2)

2 cs𝜅(𝑠/2)

and
cs𝜅(𝑟𝑧/2) ≤ 2 cs𝜅(𝑟𝑧/2 − 𝑠/2) cs𝜅(𝑠/2).

Using those inequalities we can approximate:

𝜌(𝑦, 𝑧) =
sn𝜅(𝑑(𝑦, 𝑧)/2)

cs𝜅(𝑟𝑦/2) cs𝜅(𝑟𝑧/2)

≥
1

4 cs𝜅(𝑠/2)2
sn𝜅(𝑑(𝑦, 𝑧) + 𝑠)/2)

cs𝜅(𝑟𝑦/2) cs𝜅((𝑟𝑧 − 𝑠)/2)

=
1

4 cs𝜅(𝑠/2)2
sn𝜅(𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑦))/2)

cs𝜅(𝑟𝑦/2) cs𝜅((𝑟𝑧 − 𝑑(𝑥, 𝑦))/2)

≥
1

4 cs𝜅(𝑠/2)2 𝜌(𝑥, 𝑧).

It follows that

𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧) ≥
1

4 cs𝜅(𝑠/2)2 𝜌(𝑥, 𝑧).

We can therefore set

𝜇2 ∶= min(𝜇1(2𝑠),
1

4 cs𝜅(𝑠/2)2 )

to satisfy the inequality.
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We now can give the proof of Theorem 16.

Proof of Theorem 16 ([LS07]). Assume that (𝑋, 𝑑) is 𝛿-hyperbolic with
0 ≤ 𝛿 < ln(2). Let 𝑠0 = 𝑠0(𝛿) > 0 be the constant given in Lemma 8
and let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 = 𝑥0, … , 𝑥𝑛 = 𝑦 be a chain from 𝑥 to 𝑦. Let
𝑠 = 𝑑(𝑥, 𝑦), 𝑟𝑥 = 𝑑(𝑜, 𝑥), 𝑟𝑦 = 𝑑(𝑜, 𝑦) and without loss of generality
assume that 𝑟𝑥 ≤ 𝑟𝑦. We consider two cases

1. There exists some 𝑘 ∈ {0, … , 𝑛} with 𝑑(𝑜, 𝑥𝑘) ≤ 𝑠0: If 𝑟𝑦 ≤ 2𝑠0
then we obtain 𝑑(𝑥, 𝑦) ≤ 𝑟𝑥 + 𝑟𝑦 ≤ 4𝑠0 we can then apply
Lemma 13 and get

∑ 𝜌(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜇1(4𝑠0)𝜌(𝑥, 𝑦).

In case that 𝑟𝑦 > 2𝑠0 compute using Lemma 12:

sn𝜅(
𝑟𝑦 − 𝑠0

2
) ≥

1
2 cs𝜅(𝑠0/2)

sn𝜅(
𝑟𝑦

2
)

=
1

2 cs𝜅(𝑠0/2)
sn𝜅(

𝑟𝑦 + 𝑟𝑥

2
−

𝑟𝑥
2

)

≥
1

4 cs𝜅(𝑠0/2) cs𝜅(𝑟𝑥/2)
sn𝜅(

𝑟𝑦 + 𝑟𝑥

2
).
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Now we use Lemma 11 (𝜌rad(⋅, ⋅) ≤ 𝜌(⋅, ⋅)) and the triangle in-
equality for 𝜌rad (Lemma 10) to approximate

∑
𝑖

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜌rad(𝑥, 𝑥𝑘) + 𝜌rad(𝑥𝑘, 𝑦)

≥ 𝜌rad(𝑥𝑘, 𝑦)
= 𝐹𝜅(|𝑟𝑦 − 𝑟𝑥𝑘 |; 𝑟𝑦, 𝑟𝑥𝑘)
≥ 𝐹𝜅(|𝑟𝑦 − 𝑠0|; 𝑟𝑦, 𝑠0)

=
sn𝜅(

𝑟𝑦−𝑠0

2 )
cs𝜅(𝑠0/2) cs𝜅(𝑟𝑦/2)

≥
1

4 cs𝜅(𝑠0/2)2

sn𝜅(
𝑟𝑦+𝑟𝑥

2 )
cs𝜅(𝑟𝑥/2) cs𝜅(𝑟𝑦/2)

≥
1

4 cs𝜅(𝑠0/2)2 𝜌(𝑥, 𝑦).

2. In case that 𝑑(𝑜, 𝑥𝑘) ≥ 𝑠0 for all 𝑘 ∈ {0, … , 𝑛} do the following:
Define a subsequence 0 ≤ 𝑖0 < 𝑖1 < … < 𝑖𝑘 = 𝑛 recursively in
the following way: Let 𝑖0 ∈ {0, … , 𝑛} be the largest number such
that 𝑑(𝑥, 𝑥𝑖0) ≤ 𝑠0. If 𝑖𝑚 is already defined and 𝑖𝑚 < 𝑛, then let
𝑖𝑚+1 be the largest number such that 𝑑(𝑥(𝑖𝑚)+1, 𝑥𝑖(𝑚+1)) ≤ 𝑠0.
For 𝑗 ∈ {0, … , 𝑘} define

𝑧𝑗 ∶= 𝑥𝑖𝑗

and define
𝑤𝑗 ∶= 𝑥𝑖(𝑗−1)+1

for 𝑗 ≥ 1 and set 𝑤0 ∶= 𝑥. By this construction the following
inequalities hold for 𝑖 ≠ 𝑗:

𝑑(𝑤𝑖, 𝑤𝑗) > 𝑠0

and
𝑑(𝑤𝑗, 𝑧𝑗) ≤ 𝑠0.
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Given a chain 𝑥0, … , 𝑥𝑛 in 𝑋 and two elements of the chain 𝑢, 𝑣
use the following notation:

∑
𝑢,…,𝑣

𝜌 ∶=
𝑡−1
∑
𝑖=𝑠

𝜌(𝑥𝑖, 𝑥𝑖+1),

where 0 ≤ 𝑠 < 𝑡 ≤ 𝑛 are such that 𝑥𝑠 = 𝑢 and 𝑥𝑡 = 𝑣.
We have

∑
𝑥0,…,𝑥𝑛

𝜌 =
𝑘−1
∑
𝑖=0

⎛⎜⎜
⎝

∑
𝑤𝑖,…,𝑤𝑖+1

𝜌⎞⎟⎟
⎠

+ ∑
𝑤𝑘,…,𝑧𝑘

𝜌

=
𝑘−1
∑
𝑖=0

⎛⎜⎜
⎝

∑
𝑤𝑖,…,𝑧𝑖

𝜌 + 𝜌(𝑧𝑖, 𝑤𝑖+1)⎞⎟⎟
⎠

+ ∑
𝑤𝑘,…,𝑧𝑘

𝜌

≥
𝑘−1
∑
𝑖=0

(𝜇1(𝑠0)𝜌(𝑤𝑖, 𝑧𝑖) + 𝜌(𝑧𝑖, 𝑤𝑖+1)) + 𝜇1(𝑠0)𝜌(𝑤𝑘, 𝑧𝑘)

≥
𝑘−1
∑
𝑖=0

(𝜇1(𝑠0)𝜇2(𝑠0)𝜌(𝑤𝑖, 𝑤𝑖+1)) + 𝜇1(𝑠0)𝜌(𝑤𝑘, 𝑦)

≥
1
4

𝜇1(𝑠0)𝜇2(𝑠0)𝜌(𝑥, 𝑤𝑘) + 𝜇1(𝑠0)𝜌(𝑤𝑘, 𝑦)

≥
1
4

𝜇1(𝑠0)𝜇2(𝑠0)2𝜌(𝑥, 𝑦).

Here we have applied Lemma 13 to get

∑
𝑤𝑖,…,𝑧𝑖

𝜌 ≥ ̄𝜌(𝑤𝑖, 𝑧𝑖) ≥ 𝜇1(𝑠0)𝜌(𝑤𝑖, 𝑧𝑖)

and then used Lemma 15 to get

𝜇1(𝑠0)𝜌(𝑤𝑖, 𝑧𝑖) + 𝜌(𝑧𝑖, 𝑤𝑖+1) ≥ 𝜇1(𝑠0) (𝜌(𝑤𝑖, 𝑧𝑖) + 𝜌(𝑧𝑖, 𝑤𝑖+1))
≥ 𝜇1(𝑠0)𝜇2(𝑠0)𝜌(𝑤𝑖, 𝑤𝑖+1).

We have used that 𝜌(𝑤𝑖, 𝑧𝑖) ≤ 𝑠0 and 𝜌(𝑤𝑖, 𝑤𝑖+1) > 𝑠0. Note that
wehave 𝑑(𝑜, 𝑤𝑖), 𝑑(𝑜, 𝑤𝑗), 𝑑(𝑜, 𝑤𝑙), 𝑑(𝑤𝑖, 𝑤𝑗), 𝑑(𝑤𝑗, 𝑤𝑙), 𝑑(𝑤𝑙, 𝑤𝑖) ≥
𝑠0 for all different 𝑖, 𝑗, 𝑙 ∈ {0, … , 𝑘 − 1}. Therefore we can apply
Lemma 8 and then apply Frink’s Lemma 9. In the end we apply
Lemma 15 again and the result follows.
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Lemma 16. For any complete 𝛿-hyperbolic space (𝑋, 𝑑) with base point
𝑜 ∈ 𝑋 and ̄𝜌 as defined previously. We can Cauchy complete the metric space
as (�̄� = 𝑋 ∪ 𝜕𝑋, ̄𝜌) and we have 𝜕∞𝑋 = 𝜕𝑋 as sets. Furthermore we have

𝜔 ∈ 𝜕𝑋 ⟺ ̄𝜌(𝑜, 𝜔) = 1.

Proof. We proof a version of this result in the next section for general
metric spaces. It follows that whenever the Gromov boundary 𝜕∞𝑋 is
well defined, then it is equal as a set to the set of Cauchy sequences.
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4.3.5 General Metric Spaces

In this section let (𝑋, 𝑑) be a complete metric space, and 𝑜 ∈ 𝑋 a base
point. Define as in the previous section the semi-metric6

𝜌(𝑥, 𝑦) =
sinh(𝑑(𝑥, 𝑦)/2)

cosh(𝑑(𝑥, 𝑜)/2) cosh(𝑑(𝑦, 𝑜)/2)
,

and form the metric ̄𝜌, by the chain construction

̄𝜌(𝑥, 𝑦) = inf∑ 𝜌(𝑥𝑖, 𝑥𝑖−1),

as done previously. We can then form the metric completion (as in
Proposition 2) �̄� = 𝑋 ∪ 𝜕𝑋, by abuse of notation we write ̄𝜌 for the
metric on �̄�.

Proposition 23. For a general metric space the topologies of (𝑋, 𝑑) and
(𝑋, ̄𝜌) are equivalent.

Proof. 1. Let 𝑥0 ∈ 𝑋, 𝜖 > 0 and let 𝐵 = 𝐵𝜖(𝑥0, 𝑑) be the open ball
around 𝑥0 in the metric 𝑑. We have to show that there exists
an 𝜂 which depends only on 𝑥0, 𝜖 such that the open ball 𝐵′ =
𝐵𝜂(𝑥0, ̄𝜌) in the metric ̄𝜌 is contained in the ball 𝐵. Assume that
𝑑(𝑥0, 𝑥) < 𝜂 for some 𝜂 to be determined later. Then it follows
that

̄𝜌(𝑥0, 𝑥) ≤ 𝜌(𝑥0, 𝑥) =
sinh(𝑑(𝑥0,𝑥)

2 )

cosh(𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑥,𝑜)

2 )

≤
sinh(𝜂

2)
cosh(0) cosh(0)

= sinh(
𝜂
2

).

In particular we can choose 𝜂 < 2 arcsinh(𝜖) and we get that
̄𝜌(𝑥0, 𝑥) < 𝜖.

6 Again we drop the specification of the base point 𝑜 from the metric whenever it is
clear from the context.
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2. To show the other direction let 𝑥0 ∈ 𝑋, 𝜖 > 0 and let 𝐵 =
𝐵𝜖(𝑥0, ̄𝜌) be the open ball around 𝑥0 in the metric ̄𝜌. Assume
that ̄𝜌(𝑥0, 𝑥) < 𝜂 for some 𝜂 to be determined later. Remark:
We first show that there exists a constant 𝑐1 > 0 such that for
all 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑥0, 𝑥) < 𝜖 and 𝑑(𝑥0, 𝑦) > 2𝜖 it holds that
𝜌(𝑥, 𝑦) ≥ 𝑐1. To see this note that

𝜌(𝑥, 𝑦) =
sinh(𝑑(𝑥,𝑦)

2 )

cosh(𝑑(𝑥,𝑜)
2 ) cosh(𝑑(𝑦,𝑜)

2 )

≥
sinh(𝑑(𝑥,𝑦)

2 )

cosh(𝑑(𝑥,𝑥0)+𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑦,𝑥)+𝑑(𝑥,𝑜)

2 )

≥
sinh(𝑑(𝑥,𝑦)

2 )

cosh(𝑑(𝑥,𝑥0)+𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑥,𝑦)+𝑑(𝑥,𝑥0)+𝑑(𝑥0,𝑜)

2 )

≥
sinh(𝑑(𝑥,𝑦)

2 )

cosh(𝜖+𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑥,𝑦)+𝜖+𝑑(𝑥0,𝑜)

2 )

≥ 𝑐1(𝜖, 𝑥0).

We consider the following cases:
a) Let 𝑑(𝑥0, 𝑥) ≤ 2𝜖. Then we have by Lemma 13 that

𝜂 > ̄𝜌(𝑥0, 𝑥) ≥ 𝜇1(2𝜖)𝜌(𝑥0, 𝑥)

= 𝜇1(2𝜖)
sinh(𝑑(𝑥0,𝑥)

2 )

cosh(𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑥,𝑜)

2 )

≥ 𝜇1(2𝜖)
𝑑(𝑥0,𝑥)

2

cosh(𝑑(𝑥0,𝑜)
2 ) cosh(𝑑(𝑥,𝑥0)+𝑑(𝑥0,𝑜)

2 )

≥ 𝜇1(2𝜖)
𝑑(𝑥0,𝑥)

2

cosh(𝑑(𝑥0,𝑜)
2 ) cosh(2𝜖+𝑑(𝑥0,𝑜)

2 )
.
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In particular if we choose 𝜂 > 0 such that

𝜖 >
2𝜂 cosh(𝑑(𝑥0,𝑜)

2 ) cosh(2𝜖+𝑑(𝑥0,𝑜)
2 )

𝜇1(2𝜖)
we are done.

b) Let 𝑑(𝑥0, 𝑥) > 2𝜖. Then there exists a chain 𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛 =
𝑥 such that ∑𝑛−1

𝑖=0 𝜌(𝑥𝑖, 𝑥𝑖+1) < 𝜂, because of ̄𝜌(𝑥0, 𝑥) < 𝜂
such a chain clearly must exist. Let 𝑘 be the largest index
such that for all 𝑖 ∈ {0, … , 𝑘} we have 𝑑(𝑥0, 𝑥𝑖) ≤ 2𝜖, then:

̄𝜌(𝑥0, 𝑥𝑘) < 𝜂 because ̄𝜌(𝑥0, 𝑥𝑘) ≤ ∑𝑛−1
𝑖=0 𝜌(𝑥𝑖, 𝑥𝑖+1) < 𝜂. It

then follows from the previous case that 𝑑(𝑥0, 𝑥𝑘) < 𝜖 for
a suitable choice (as above) of 𝜂. By the remark above it
follows further that 𝜌(𝑥𝑘, 𝑥𝑘+1) ≥ 𝑐1(𝜖, 𝑥0). But then 𝜂 ≥ 𝑐1
by the chain construction. We can therefore take 0 < 𝜂 < 𝑐1
and this case does not appear.

Proposition 24. Let (𝑋, 𝑑) be a metric space with base point 𝑜 ∈ 𝑋 and let
{𝑥𝑖} ⊂ 𝑋 be a sequence of points converging to infinity (i.e., lim𝑖,𝑗→∞(𝑥𝑖|𝑥𝑗)𝑜 =
∞). Then {𝑥𝑖} is a Cauchy sequence in (𝑋, ̄𝜌).

Proof. We have
lim

𝑖,𝑗→∞
(𝑥𝑖|𝑥𝑗)𝑜 = ∞

therefore

lim
𝑖,𝑗→∞

1
2

(𝑑(𝑥𝑖, 𝑜) + 𝑑(𝑥𝑗, 𝑜) − 𝑑(𝑥𝑖, 𝑥𝑗)) = ∞,

and so we also know that 𝑑(𝑥𝑖, 𝑜) → ∞ as 𝑖 → ∞. For 𝑖, 𝑗 → ∞ we then
get that

̄𝜌(𝑥𝑖, 𝑥𝑗) ≤ 𝜌(𝑥𝑖, 𝑥𝑗) =
sinh(𝑑(𝑥𝑖, 𝑥𝑗)/2)

cosh(𝑑(𝑥𝑖, 𝑜)/2) cosh(𝑑(𝑥𝑗, 𝑜)/2)

≤
4 exp(𝑑(𝑥𝑖, 𝑥𝑗)/2)

exp(𝑑(𝑥𝑖, 𝑜)/2) exp(𝑑(𝑥𝑗, 𝑜)/2)
= 4 exp(−(𝑥𝑖|𝑥𝑗)𝑜) → 0.
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Corollary 2. Let (𝑋, 𝑑) be a metric space with a base point 𝑜 ∈ 𝑋 and let
{𝑥𝑖} and {𝑦𝑖} be two sequences of points in 𝑋 converging to infinity. If

lim
𝑖→∞

(𝑥𝑖|𝑦𝑖)𝑜 = ∞

then both sequences converge to the same point in the space (𝑋, ̄𝜌).

Remark 21. For a metric space (𝑋, 𝑑) with base point 𝑜 ∈ 𝑋 and a sequence
of points {𝑥𝑖} in 𝑋 converging to infinity we have

lim
𝑖→∞

̄𝜌(𝑜, 𝑥𝑖) ≤ 1.

Proof.

̄𝜌(𝑜, 𝑥𝑖) ≤ 𝜌(𝑜, 𝑥𝑖) =
sinh(𝑑(𝑜, 𝑥𝑖)/2)

cosh(𝑑(𝑜, 𝑜)/2) cosh(𝑑(𝑥𝑖, 𝑜)/2)

=
sinh(𝑑(𝑜, 𝑥𝑖)/2)
cosh(𝑑(𝑥𝑖, 𝑜)/2)

= tanh(𝑑(𝑥𝑖, 𝑜)/2) → 1

as 𝑑(𝑥𝑖, 𝑜) → ∞.

Remark 22. For a complete 𝛿-hyperbolic space (𝑋, 𝑑)withGromov boundary
𝜕∞𝑋, the above results imply that for some 𝑥 ∈ [𝑥] ∈ 𝜕∞𝑋 (meaning for
any choice of representative), 𝑥 ∈ 𝜕𝑋. Furthermore the corollary implies that
for 𝑥, 𝑥′ ∈ [𝑥] ∈ 𝜕∞𝑋, we have equality 𝑥 = 𝑥′ in 𝜕𝑋.

Lemma 17. Let (𝑋, 𝑑) be a metric space with base point 𝑜 ∈ 𝑋 and a point
𝜔 at infinity. Let 𝑜 = 𝑥0, 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1 = 𝜔 be a chain. Then

𝑛
∑
𝑖=0

𝜌(𝑥𝑖, 𝑥𝑖+1) =
𝑛

∑
𝑖=0

sinh(𝑑(𝑥𝑖, 𝑥𝑖+1))
cosh(𝑑(𝑜, 𝑥𝑖)/2) cosh(𝑑(𝑜, 𝑥𝑖+1)/2)

≥ 1.

Proof. From Lemma 10 we know that the radial part of the metric 𝜌
satisfies the triangle inequality. If we had ̄𝜌(𝑜, 𝜔) < 1 then there would
be some chain 𝑜 = 𝑥1, … , 𝑥𝑛 = 𝜔 with

𝑛−1
∑
𝑖=1

𝜌(𝑥𝑖, 𝑥𝑖+1) < 𝜌(𝑜, 𝜔) = 1.
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But we can now calculate:
𝑛−1
∑
𝑖=1

𝜌(𝑥𝑖, 𝑥𝑖+1) ≥
𝑛−1
∑
𝑖=1

𝜌rad(𝑥𝑖, 𝑥𝑖+1) ≥ 𝜌rad(𝑜, 𝜔) = 𝜌(𝑜, 𝜔) = 1.

We therefore must have ̄𝜌(𝑜, 𝜔) = 1.

In conclusion we have the following result:

Theorem 18. Let (𝑋, 𝑑) be a metric space with base point 𝑜 ∈ 𝑋 and a point
at infinity 𝜔 ∈ 𝜕𝑋. Then:

̄𝜌(𝑜, 𝜔) = 1.

In particular we also get the following theorem:

Theorem 19. Let (𝑋, 𝑑) be a metric space with base point 𝑜 ∈ 𝑋 and let
𝑥 ∈ 𝑋 ∪ 𝜕𝑋 be some point. Then for the metric ̄𝜌 with respect to the base
point 𝑜 the following holds:

̄𝜌(𝑜, 𝑥) = 1 ⟺ 𝑥 ∈ 𝜕𝑋

Proof. One direction directly follows from the above theorem. For the
other direction (𝑥 ∈ 𝑋 ⧵ 𝜕𝑋 and 𝑑(𝑜, 𝑥) < ∞) note that:

̄𝜌(𝑜, 𝑥) ≤ 𝜌(𝑜, 𝑥) = 𝜌rad(𝑜, 𝑥) =
sinh(𝑑(𝑜,𝑥)

2
)

cosh(𝑑(𝑜,𝑥)
2

)
= tanh(

𝑑(𝑜, 𝑥)
2

) < 1.

Remark 23. In a complete 𝛿-hyperbolic space (𝑋, 𝑑), this implies that given
𝑥 ∈ 𝜕𝑋 (the set from the Cauchy completion), then 𝑥 ∈ 𝜕∞𝑋 (the Gromov
boundary). This can also be seen as follows: Scale the metric 𝑑 such that
(𝑋, 𝑑) is 𝛿-hyperbolic with 𝛿 < ln(2). Because a scaling acts on the Gromov
boundary by homeomorphisms, this does not change 𝜕𝑋 or 𝜕∞ as sets. Then
for a Cauchy sequence 𝑥 ∈ 𝜕𝑋 we have

̄𝜌(𝑥𝑖, 𝑥𝑗) ≤ 𝜌(𝑥𝑖, 𝑥𝑗) ≤ 𝜆 ̄𝜌(𝑥𝑖, 𝑥𝑗),

for some 𝜆 > 1. This implies that 𝜌(𝑥𝑖, 𝑥𝑗) → 0, and this in turn implies
(𝑥𝑖|𝑥𝑗)𝑜 → ∞, therefore 𝑥 ∈ 𝜕∞𝑋. In particular with the remark from above
we have that 𝜕𝑋 = 𝜕∞𝑋 as sets.





A
APPENDIX

Books are the treasured wealth of the world and the
fit inheritance of generations and nations.

— Henry David Thoreau

a.1 invariance of doubling property for quasi-metric spaces

The following follows mostly the proof in the main part of the thesis,
but in a more general form. It has been moved to the appendix as it
might be of limited interest to most readers.

Proposition 25. Let (𝑋, 𝑑) be a 𝐾-quasi-metric space [BS07]. Let 𝑋∞
denote the infinite remote set and let ∞ ∈ 𝑋∞, i.e. the space satisfies the
relations

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦,

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

3. 𝑑(𝑥, 𝑦) ≤ 𝐾max{𝑑(𝑥, 𝑧), 𝑑(𝑧, 𝑦)} for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 for which all
distances are defined,

4. 𝑑(𝑥, 𝑦) < ∞ ⟺ 𝑥, 𝑦 ∈ 𝑋 ⧵ 𝑋∞.

Let 𝜆 ∶ 𝑋 → [0, ∞], 𝐿 > 0 and 𝐾′ ≥ 𝐾 be such that 𝑋∞ = 𝜆−1(∞) and

1. 𝑑(𝑥, 𝑦) ≤ 𝐾′ max{𝐿𝜆(𝑥), 𝐿𝜆(𝑦)},

2. 𝐿𝜆(𝑥) ≤ 𝐾′ max{𝑑(𝑥, 𝑦), 𝐿𝜆(𝑦)}.

Denote by 𝑋′
∞ ∶= {𝜆−1(0)}. Define a new metric 𝑑𝜆 ∶ (𝑋 × 𝑋) ⧵ (𝑋′

∞ ×
𝑋′

∞) → [0, ∞] by

1. 𝑑𝜆(𝑥, 𝑦) ∶= 𝑑(𝑥,𝑦)
𝜆(𝑥)𝜆(𝑦) for 𝑥, 𝑦 ∈ 𝑋 ⧵ 𝑋′

∞,
103
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2. 𝑑𝜆(𝑥, ∞) ∶= 𝑑𝜆(∞, 𝑥) ∶= 𝐿
𝜆(𝑥) for ∞ ∈ 𝑋∞,

3. 𝑑𝜆(∞, ∞) = 0 for ∞ ∈ 𝑋∞,

4. 𝑑𝜆(𝑥, 𝑝) ∶= 𝑑𝜆(𝑝, 𝑥) ∶= ∞ for 𝑝 ∈ 𝑋′
∞.

If (𝑋, 𝑑) is doubling with constant 𝐷 then (𝑋, 𝑑𝜆) is doubling with constant
at most 𝐷⌈log2(8𝐾′10𝐾)⌉ + 1.

Proof. By Prop 5.3.6 in [BS07], 𝑑𝜆 is a 𝐾′2-quasi-metric. In particular
we have for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 for which all distances are defined, that:

𝑑𝜆(𝑥, 𝑦) ≤ 𝐾′2 max{𝑑(𝑑, 𝑧), 𝑑(𝑧, 𝑦)}.

Let 𝑥0 ∈ 𝑋, 𝑥0 ≠ 𝑝 ∈ 𝑋′
∞ and 𝑟 > 0 and let 𝐵′ ∶= 𝐵′

𝑟(𝑥0) ∶= {𝑥 ∈
𝑋 | 𝑑𝜆(𝑥0, 𝑥) ≤ 𝑟}. Consider the following cases

1. If 𝐵′ ∩ 𝐵′
1
2 𝑟

(∞) ≠ ∅, then let 𝐴′ ∶= 𝐵′ ⧵ 𝐵′
1
2 𝑟

(∞). For all 𝑥, 𝑦 ∈ 𝐵′

we have
𝑑𝜆(𝑥, 𝑦) =

𝑑(𝑥, 𝑦)
𝜆(𝑥)𝜆(𝑦)

≤ 𝐾′2𝑟,

from which it follows that

𝑑(𝑥, 𝑦) ≤ 𝐾′2𝑟𝜆(𝑥)𝜆(𝑦).

Furthermore we have for all 𝑥 ∈ 𝐴′ that 𝑑𝜆(∞, 𝑥) = 𝐿
𝜆(𝑥) > 1

2𝑟

and therefore also 𝜆(𝑥) < 2𝐿
𝑟 . Combining both equations we get

that for all 𝑥, 𝑦 ∈ 𝐴′ we have

𝑑(𝑥, 𝑦) ≤ 𝐾′2𝑟
2𝐿
𝑟

2𝐿
𝑟

=
𝐾′24𝐿2

𝑟
.

Without loss of generality assume 𝑥0 ∈ 𝐴′. By the doubling
property of (𝑋, 𝑑) we can cover 𝐵 𝐾′24𝐿2

𝑟

(𝑥0) by at most 𝐷𝑁 balls

𝑏𝑖 of radius
𝐾′24𝐿2

𝑟 2−𝑁. Let ̃𝑏𝑖 ∶= 𝑏𝑖 ∩ 𝐴′ then we have for all
𝑥, 𝑦 ∈ ̃𝑏𝑖:

𝑑𝜆(𝑥, 𝑦) ≤
𝐾′24𝐿2

𝑟2𝑁 𝐾
𝜆(𝑥)𝜆(𝑦)

.
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By the assumption there is a ̄𝑥 ∈ 𝐵′ ∩ 𝐵′
1
2 𝑟

(∞) and we have

for 𝑥 ∈ 𝐵′ that 𝑑𝜆(𝑥, ̄𝑥) ≤ 𝐾′2𝑟, therefore we also have 𝐿
𝜆(𝑥) =

𝑑𝜆(𝑥, ∞) ≤ 𝐾′4𝑟 and 𝜆(𝑥) ≥ 𝐿
𝐾′4𝑟 . In conclusion we get for all

𝑥, 𝑦 ∈ ̃𝑏𝑖:

𝑑𝜆(𝑥, 𝑦) ≤
𝐾′24𝐿2

𝑟2𝑁 𝐾
𝜆(𝑥)𝜆(𝑦)

≤
𝐾′24𝐿2

𝑟2𝑁 𝐾
𝐿

𝐾′4𝑟
𝐿

𝐾′4𝑟

=
𝐾′10𝐾4𝑟

2𝑁 .

In particular for 𝑁 ∶= ⌈log2(8𝐾′10𝐾)⌉ we get a cover of 𝐵′ by at
most 𝐷𝑁 + 1 balls of half the radius.

2. If 𝐵′ ∩ 𝐵′
1
2 𝑟

(∞) = ∅, then we have 𝑑𝜆(𝑥0, ∞) > 𝑟 and 𝑑𝜆(𝐵′, ∞) >
1
2𝑟. For all 𝑦 ∈ 𝐵′ we have 𝑑𝜆(𝑥0, 𝑦) = 𝑑(𝑥0,𝑦)

𝜆(𝑥0)𝜆(𝑦) ≤ 𝑟 and therefore
also

𝑑(𝑥0, 𝑦) ≤ 𝑟𝜆(𝑥0)𝜆(𝑦) ≤
𝑟𝐿2

𝑑𝜆(∞, 𝑥0)𝑑𝜆(∞, 𝑦)
=

𝑟𝐿2

𝑑𝜆(𝐵′, ∞)2 .

By the doubling property of (𝑋, 𝑑) we can find 𝐷𝑁 balls 𝑏𝑖 of
radius 𝑟𝐿2

𝑑𝜆(𝐵′,∞)2 2−𝑁 covering 𝐵′. Let ̃𝑏𝑖 ∶= 𝑏𝑖 ∩ 𝐵′, then we have

for any 𝑥, 𝑦 ∈ ̃𝑏𝑖:

𝑑𝜆(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝜆(𝑥)𝜆(𝑦)
≤

𝐾 𝑟𝐿22−𝑁

𝑑𝜆(𝐵′,∞)2

𝜆(𝑥)𝜆(𝑦)
=

𝐾𝑟2−𝑁𝑑𝜆(∞, 𝑥)𝑑𝜆(∞, 𝑦)
𝑑𝜆(𝐵′, ∞)2 .

Furthermore for any 𝑥 ∈ 𝐵′ we have

𝑑𝜆(𝑥, ∞) ≤ 𝐾′2 max{𝑑𝜆(𝑥0, 𝑥), 𝑑𝜆(𝑥0, ∞)} ≤ 𝐾′2𝑟 ≤ 𝐾′22𝑑𝜆(𝐵′, ∞).

We can combine the estimates to get

𝑑𝜆(𝑥, 𝑦) ≤
𝐾𝑟2−𝑁𝐾′44𝑑𝜆(𝐵′, ∞)2

𝑑𝜆(𝐵′, ∞)2 = 𝐾𝑟2−𝑁𝐾′44.

In particular for 𝑁 ∶= ⌈log2(8𝐾𝐾′4)⌉ we have constructed a cov-
ering by 𝐷𝑁 balls of radius at most 1

2𝑟.
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Proposition 26. Let (𝑋, 𝑑) be a 𝐾-quasi-metric space [BS07]. Let 𝑋∞
denote the infinite remote set and let ∞ ∈ 𝑋∞, i.e. the space satisfies the
relations

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦,

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

3. 𝑑(𝑥, 𝑦) ≤ 𝐾max{𝑑(𝑥, 𝑧), 𝑑(𝑧, 𝑦)} for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 for which all
distances are defined,

4. 𝑑(𝑥, 𝑦) < ∞ ⟺ 𝑥, 𝑦 ∈ 𝑋 ⧵ 𝑋∞.

Let 𝜆 ∶ 𝑋 → [0, ∞], 𝐿 > 0 and 𝐾′ ≥ 𝐾 be such that 𝑋∞ = 𝜆−1(∞) and

1. 𝑑(𝑥, 𝑦) ≤ 𝐾′ max{𝐿𝜆(𝑥), 𝐿𝜆(𝑦)},

2. 𝐿𝜆(𝑥) ≤ 𝐾′ max{𝑑(𝑥, 𝑦), 𝐿𝜆(𝑦)}.

Denote by 𝑋′
∞ ∶= {𝜆−1(0)}. Define a new metric 𝑑𝜆 ∶ (𝑋 × 𝑋) ⧵ (𝑋′

∞ ×
𝑋′

∞) → [0, ∞] by

1. 𝑑𝜆(𝑥, 𝑦) ∶= 𝑑(𝑥,𝑦)
𝜆(𝑥)𝜆(𝑦) for 𝑥, 𝑦 ∈ 𝑋 ⧵ 𝑋′

∞,

2. 𝑑𝜆(𝑥, ∞) ∶= 𝑑𝜆(∞, 𝑥) ∶= 𝐿
𝜆(𝑥) for ∞ ∈ 𝑋∞,

3. 𝑑𝜆(∞, ∞) = 0 for ∞ ∈ 𝑋∞,

4. 𝑑𝜆(𝑥, 𝑝) ∶= 𝑑𝜆(𝑝, 𝑥) ∶= ∞ for 𝑝 ∈ 𝑋′
∞.

Let 𝜃 ≤ 1
𝐾19 . If (𝑋, 𝑑𝜆) has a 𝜃-chain, then (𝑋, 𝑑) has a 3√𝜃𝐾′4-chain.

Proof. Using the same notation as before in Section 3.3 we note that
for all 𝑖 ∈ {0, … , 𝑛 − 1} the following relation holds:

𝑙𝑖
𝐾′2

𝐿2 𝑟𝑖𝑟𝑖+1

≤
𝑙𝑖

𝜆(𝑥𝑖)𝜆(𝑥𝑖+1)
≤

𝑙𝜃
𝜆(𝑥0)𝜆(𝑥𝑛)

≤
𝑙𝜃

1
𝐾′𝐿𝑟0𝑟𝑛

.
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We can apply a similar argument as in Lemma 1 to get an index 𝑞 for
which

𝑟0 ≤ 3√𝜃𝐾′4𝑟𝑞,

and such that for all 𝑖 ∈ {0, … , 𝑞 − 1} we have

𝑟0 > 3√𝜃𝐾′4𝑟𝑖.

Assume again for a contradiction that (𝑥𝑞, 𝑥𝑥−1, … , 𝑥0, 𝑝) is not a 3√𝜃𝐾′4-
chain. Then for some 𝑖 ∈ {0, … , 𝑞 − 1}:

3√𝜃𝐾′4
2
𝑟𝑞

𝐾′2

𝐿2 𝑟0𝑟𝑞

≤
3√𝜃𝐾′4𝑟𝑞
𝐾′2

𝐿2 𝑟𝑖𝑟𝑞

≤
3√𝜃𝐾′4𝑟𝑞

𝐾′2

𝐿2 𝑟𝑖𝑟𝑖+1

≤
3√𝜃𝐾′4𝑟𝑞

𝜆(𝑥𝑖)𝜆(𝑥𝑖+1)
<

𝑙𝑖
𝜆(𝑥𝑖)𝜆(𝑥𝑖+1)

(A.1)

≤
𝜃𝑙

𝜆(𝑥0)𝜆(𝑥𝑛)
≤

𝜃𝑙
1

𝐾′2𝐿2 𝑟0𝑟𝑛
(A.2)

From this it follows that

𝑟𝑛 < 3√𝜃𝐾′4𝐾′4𝑙 ≤ 𝐾−1𝑙.
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a.2 additional alternative proofs for calculating euclidean
distance from model spaces

This has originally been used for the proof of the triangle inequal-
ity (Theorem 14) for 𝜌𝑜 in CBB(𝜅) spaces with 𝜅 > 0, but was no
longer necessary when an easier proof was found. For the sake of
completeness we included it here in the appendix.

In this section we give additional constructive proofs of some lem-
mas. Those should also make it more clear that the choice of base
point is free.
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Alternative Proof of Proposition 20.
sn𝜅(𝑑(𝑥, 𝑦)/2)

cs𝜅(𝑑(𝑥, 𝑜)/2) cs𝜅(𝑑(𝑦, 𝑜)/2)

=
sinh(√−𝜅𝑑(𝑥, 𝑦)/2)

cosh(√−𝜅𝑑(𝑥, 𝑜)/2) cosh(√−𝜅𝑑(𝑦, 𝑜)/2)√−𝜅

=

√−𝜅‖𝑥−𝑦‖
√1+𝜅‖𝑥‖2√1+𝜅‖𝑦‖2

√2+ −2𝜅‖𝑥−𝑜‖2

(1+𝜅‖𝑥‖2)(1+𝜅‖𝑜‖2)

√2

√2+ −2𝜅‖𝑦−𝑜‖2

(1+𝜅‖𝑦‖2)(1+𝜅‖𝑜‖2)

√2
√−𝜅

=

‖𝑥−𝑦‖
√1+𝜅‖𝑥‖2√1+𝜅‖𝑦‖2

√ 2(1+𝜅 |𝑥‖2)(1+𝜅‖𝑜‖2)−2𝜅‖𝑥−𝑜‖2

(1+𝜅‖𝑥‖2)(1+𝜅‖𝑜‖2)

√2

√ 2(1+𝜅‖𝑦‖2)(1+𝜅‖𝑜‖2)−2𝜅‖𝑦−𝑜‖2

(1+𝜅‖𝑦‖2)(1+𝜅‖𝑜‖2)

√2

=

‖𝑥−𝑦‖
√1+𝜅‖𝑥‖2√1+𝜅‖𝑦‖2

√ (1+𝜅‖𝑥‖2)(1+𝜅‖𝑜‖2)−𝜅‖𝑥−𝑜‖2

(1+𝜅‖𝑥‖2)(1+𝜅‖𝑜‖2)
√ (1+𝜅‖𝑦‖2)(1+𝜅‖𝑜‖2)−𝜅‖𝑦−𝑜‖2

(1+𝜅‖𝑦‖2)(1+𝜅‖𝑜‖2)

=
‖𝑥 − 𝑦‖

√(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖𝑜‖2) − 𝜅‖𝑥 − 𝑜‖2√(1 + 𝜅‖𝑦‖2)(1 + 𝜅‖𝑜‖2) − 𝜅‖𝑦 − 𝑜‖2

=
‖𝑥 − 𝑦‖

√(1 + 𝜅‖𝑥‖2)(1 + 𝜅‖0‖2) − 𝜅‖𝑥‖2√(1 + 𝜅‖𝑦‖2)(1 + 𝜅‖0‖2) − 𝜅‖𝑦‖2

= ‖𝑥 − 𝑦‖.

In the following lemma we show that the euclidean distance of the
projection from the sphere to the plane can be calculated from the
metric. This is the same result as Proposition 20 but gives another
constructive proof.
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𝑥
𝑦

𝑁

𝑥′

𝑦′

Figure A.1: Projection from the sphere onto the plane

Lemma 18. Let 𝑥, 𝑦 ∈ 𝑋 = 𝜕𝐵 1
√𝜅

(0) = {𝑥, |, ‖𝑥 − 0‖ = 1
√𝜅} and denote by

∠𝑧(𝑥, 𝑦) the angle between the two lines 𝑧𝑥, 𝑧𝑦. The spherical metric on 𝑋 is
given by 𝑑(𝑥, 𝑦) = ∠(𝑥, 𝑦) = ∠0(𝑥, 𝑦) 1

√𝜅 . Then:

sn𝜅(𝑑(𝑥, 𝑦)/2)
cs𝜅(𝑑(𝑥, 𝑝)/2) cs𝜅(𝑑(𝑦, 𝑝)/2)

= ‖𝑥′ − 𝑦′‖

where 𝑥′, 𝑦′ are the points given by projecting onto the plane orthogonal to
−𝑝𝑝 by some line going through −𝑝𝑥𝑥′ respectively −𝑝𝑦𝑦′. See Figure A.1.

Proof. We can calculate the following distances:

‖𝑥 − 𝑁‖ = 2 sin(
∠(𝑁, 𝑥)

2
)

1
√𝜅

= 2 sin(
𝑑(𝑁, 𝑥)√𝜅

2
)

1
√𝜅

,

‖𝑦 − 𝑁‖ = 2 sin(
∠(𝑁, 𝑦)

2
)

1
√𝜅

= 2 sin(
𝑑(𝑁, 𝑦)√𝜅

2
)

1
√𝜅

,

‖𝑥 − 𝑦‖ = 2 sin(
∠(𝑥, 𝑦)

2
)

1
√𝜅

= 2 sin(
𝑑(𝑥, 𝑦)√𝜅

2
)

1
√𝜅

.

Note that ∠(𝑁, 𝑥) = 𝜋 − ∠(𝑆, 𝑥), therefore

‖𝑥′−𝑁‖ =
1

cos(∠𝑁(𝑥, 0))√𝜅
=

1
cos(𝜋 − ∠(𝑥,𝑁)

2 − 𝜋
2 )√𝜅

=
1

cos(∠(𝑥,𝑆)
2 )√𝜅

,
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and

‖𝑦′−𝑁‖ =
1

cos(∠𝑁(𝑥, 0))√𝜅
=

1

cos(𝜋 − ∠(𝑦,𝑁)
2 − 𝜋

2 )√𝜅
=

1

cos(∠(𝑦,𝑆)
2 )√𝜅

.

Furthermore because sin(𝜋
2 − 𝑥) = cos(𝑥) we get:

‖𝑥−𝑁‖ = 2 sin(
∠(𝑁, 𝑥)

2
)

1
√𝜅

= 2 sin(
𝜋 − ∠(𝑆, 𝑥)

2
)

1
√𝜅

= 2 cos(
∠(𝑆, 𝑥)

2
)

1
√𝜅

,

‖𝑦−𝑁‖ = 2 sin(
∠(𝑁, 𝑦)

2
)

1
√𝜅

= 2 sin(
𝜋 − ∠(𝑆, 𝑦)

2
)

1
√𝜅

= 2 cos(
∠(𝑆, 𝑦)

2
)

1
√𝜅

.

Applying the law of cosines to the above distances we can calculate
the angle between the lines 𝑁𝑥, 𝑁𝑦:

𝛼 ∶= ∠𝑁(𝑥, 𝑦) = arccos(
‖𝑥 − 𝑁‖2 + ‖𝑦 − 𝑁‖2 − ‖𝑥 − 𝑦‖2

2‖𝑥 − 𝑁‖‖𝑦 − 𝑁‖
).
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Then applying the law of cosines again we can calculate:

‖𝑥′ − 𝑦′‖2 = ‖𝑁 − 𝑥′‖2 + ‖𝑁 − 𝑦′‖2 − 2‖𝑁 − 𝑥′‖‖𝑁 − 𝑦′‖ cos(𝛼)

=
1

cos(∠(𝑥,𝑆)
2 )2𝜅

+
1

cos(∠(𝑦,𝑆)
2 )2𝜅

− 2
1

cos(∠(𝑥,𝑆)
2 )√𝜅

1

cos(∠(𝑦,𝑆)
2 )√𝜅

cos(𝛼)

=
cos(∠(𝑦,𝑆)

2 )2 + cos(∠(𝑥,𝑆)
2 )2 − 2 cos(∠(𝑥,𝑆)

2 ) cos(∠(𝑦,𝑆)
2 ) cos(𝛼)

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

=
cos(∠(𝑦,𝑆)

2 )2 + cos(∠(𝑥,𝑆)
2 )2

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

−
2 cos(∠(𝑥,𝑆)

2 ) cos(∠(𝑦,𝑆)
2 )

4 cos( ∠(𝑆,𝑥)
2 )2 1

𝜅 +4 cos( ∠(𝑆,𝑦)
2 )2 1

𝜅 −4 sin( ∠(𝑥,𝑦)
2 )2 1

𝜅

8 cos( ∠(𝑆,𝑥)
2 ) cos( ∠(𝑆,𝑦)

2 ) 1
𝜅

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

=
cos(∠(𝑦,𝑆)

2 )2 + cos(∠(𝑥,𝑆)
2 )2

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

−
cos(∠(𝑥,𝑆)

2 ) cos(∠(𝑦,𝑆)
2 )

cos( ∠(𝑆,𝑥)
2 )2 1

𝜅 +cos( ∠(𝑆,𝑦)
2 )2 1

𝜅 −sin( ∠(𝑥,𝑦)
2 )2 1

𝜅

cos( ∠(𝑆,𝑥)
2 ) cos( ∠(𝑆,𝑦)

2 ) 1
𝜅

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

=
cos(∠(𝑦,𝑆)

2 )2 + cos(∠(𝑥,𝑆)
2 )2 − cos(∠(𝑆,𝑥)

2 )2 − cos(∠(𝑆,𝑦)
2 )2 + sin(∠(𝑥,𝑦)

2 )2

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

=
sin(∠(𝑥,𝑦)

2 )2

cos(∠(𝑥,𝑆)
2 )2cos(∠(𝑦,𝑆)

2 )2𝜅

=
sin(𝑑(𝑥,𝑦)√𝜅

2 )2

cos(𝑑(𝑥,𝑆)√𝜅
2 )2cos(𝑑(𝑦,𝑆)√𝜅

2 )2𝜅

=
sn𝜅(𝑑(𝑥,𝑦)

2 )2

cs𝜅(𝑑(𝑥,𝑆)
2 )2cs𝜅(𝑑(𝑦,𝑆)

2 )2
.
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a.3 a discrete graph as a model of the hyperbolic plane

The following example has been constructed together with Viktor
Schroeder, who helped complete the proof which shows that the graph
it is 1-hyperbolic.

outline of construction. We construct a metric graph 𝑉+ and
show that this graph must be 1-hyperbolic. We then scale the metric
by 𝛿 and show that for 𝛿 > ln(2) we can no longer get bi-Lipschitz
equivalence in Theorem 16.

a.3.1 Construction of Graph

Consider the planar graph 𝐺 embedded in ℝ2 given by:

vertices: The vertices are given by the set𝑉 = {(𝑘⋅2−𝑛, 𝑛) ∈ ℝ2 | 𝑘, 𝑛 ∈
ℤ},

edges: There are horizontal edges (joining two vertices of the same
level)

𝐸hor = {{𝑘 ⋅ 2−𝑛, 𝑛), ((𝑘 + 1)2−𝑛, 𝑛)} | 𝑘, 𝑛 ∈ ℤ}

and vertical edges (joining two vertices of neighboring levels):

𝐸vert = {{(𝑘 ⋅ 2−𝑛, 𝑛), ((2𝑘 − 1)2−𝑛−1, 𝑛 + 1)},

{(𝑘 ⋅ 2−𝑛, 𝑛), ((2𝑘)2−𝑛−1, 𝑛 + 1)},

{(𝑘 ⋅ 2−𝑛, 𝑛), ((2𝑘 + 1)2−𝑛−1, 𝑛 + 1)} | 𝑘, 𝑛 ∈ ℤ}

Thus every vertex 𝑣 is in two horizontal edges joining it with “right”
and “left” neighbors of the same level. It is contained in three edges
joining it to neighbors of one level higher. It is contained in one or
two edges joining it to neighboring vertices of one level lower: 𝑣 =
(𝑘, 2−𝑛, 𝑛) has two neighbors of level (𝑛 − 1) if 𝑘 is odd and one if 𝑘 is
even.
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−1

0

1

2

(−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0)

𝑉+

Figure A.2: An example of a discrete hyperbolic space

We consider on 𝑉 the path metric 𝑑 of the graph, where we give
every edge the length 1 (if scaled to length ln(2) we obtain a discrete
“model” of ℍ2).

We define

𝑉+ = {𝑣 = (𝑘2−𝑛, 𝑛) | 𝑛 ≥ 0, |𝑘2−𝑛| < 1, 𝑛 ∈ ℤ} .

Note that for 𝑥 = (−1
2 , 2), 𝑦 = (1

2 , 2), 𝑧 = (0, 2), 𝑜 = (0, 0) we have

𝑑(𝑥, 𝑧) = 2 = 𝑑(𝑧, 𝑦), 𝑑(𝑥, 𝑦) = 4

and
𝑑(𝑜, 𝑥) = 𝑑(𝑜, 𝑦) = 𝑑(𝑜, 𝑧) = 2

therefore the Gromov products satisfy:

(𝑥|𝑧)𝑜 = (𝑦|𝑧)𝑜 = 1, (𝑥|𝑦)𝑜 = 0.
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Figure A.3: The discrete hyperbolic space 𝑉+
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Note that a space is Gromov 𝛿-hyperbolic if for all 𝑥, 𝑦, 𝑧, 𝑜:

(𝑥|𝑧)𝑜 ≥ min((𝑥|𝑦)𝑜, (𝑦|𝑧)𝑜) − 𝛿.

Therefore in our space we must have that 𝛿 ≥ 1.
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a.3.2 Geodesics in G

Definition 35. A sequence 𝑣𝑜, 𝑣1, … , 𝑣𝑘 of vertices is a geodesic if 𝑑(𝑣0, 𝑣𝑘) =
𝑘. This implies that 𝑑(𝑣𝑖, 𝑣𝑗) = |𝑗 − 𝑖| ∀𝑖, 𝑗 ∈ {0, … , 𝑘}. A geodesic
𝑣0, … , 𝑣𝑘 is called vertical, if 𝑙(𝑣𝑜) − 𝑙(𝑣𝑘)| = 𝑘. This implies that either:

𝑙(𝑣𝑗) = 𝑙(𝑣0) + 𝑗 for all 𝑗 or,
𝑙(𝑣𝑗) = 𝑙(𝑣0) − 𝑗 for all 𝑗.

A geodesic 𝑣0, … , 𝑣𝑘 is horizontal if 𝑙(𝑣0) = … = 𝑙(𝑣𝑘). By inspection on
the graph it is easy to see that a horizontal geodesic has length 𝑘 ≤ 4.

Definition 36. Given 𝑥, 𝑦, 𝑧 ∈ 𝑉 we say: 𝑧 lies between 𝑥 and 𝑦 if 𝑑(𝑥, 𝑧)+
𝑑(𝑧, 𝑦) = 𝑑(𝑥, 𝑦). This implies that there exists a geodesic from 𝑥 to 𝑦 going
through 𝑧.

Definition 37. Let 𝑥, 𝑦 ∈ 𝑉 then

minlev(𝑥, 𝑦) = 𝑙

is the minimum level, such that there exists 𝑧 between 𝑥 and 𝑦 with 𝑙(𝑧) =
minlev(𝑥, 𝑦).

Lemma 19. Let 𝑥, 𝑦 ∈ 𝑉 with 𝑑(𝑥, 𝑦) = 𝑘 then there exist 0 ≤ 𝑟 ≤ 𝑠 ≤
𝑘 and a geodesic 𝑥 = 𝑣0, … , 𝑣𝑘 = 𝑦 such that 𝑣0, … , 𝑣𝑟 is vertical with
decreasing level, 𝑣𝑟, … , 𝑣𝑠 is horizontal with length 𝑠 − 𝑟 ≤ 2 and 𝑣𝑠, … , 𝑣𝑘
is vertical with increasing level. And furthermore 𝑙(𝑣𝑟) = … = 𝑙(𝑣𝑠) =
minlev(𝑥, 𝑦).

Proof. (a) First note that there is no geodesic𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2 with 𝑙(𝑤𝑖) <
𝑙(𝑤𝑖+1) > 𝑙(𝑤𝑖+2). Nowwe have the following replacement procedure:

(b1) Let 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2 be a geodesic with 𝑙(𝑤𝑖) = 𝑙(𝑤𝑖+1) > 𝑙(𝑤𝑖+2).
This can be replaced by a geodesic 𝑤𝑖, 𝑤′

𝑖+1, 𝑤𝑖+2 with 𝑙(𝑤𝑖) >
𝑙(𝑤′

𝑖+1) = 𝑙(𝑤𝑖+2).

(b2) Let 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2 with 𝑙(𝑤𝑖) < 𝑙(𝑤𝑖+1) = 𝑙(𝑤𝑖+2). This can be
replaced by 𝑤𝑖, 𝑤′

𝑖+1, 𝑤𝑖+2 with 𝑙(𝑤𝑖) = 𝑙(𝑤′
𝑖+1) < 𝑙(𝑤𝑖+2).
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𝑥

𝑣𝑟 𝑣𝑠

𝑦

Figure A.4: A standard geodesic in the discrete hyperbolic space

(b3) Let 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2, 𝑤𝑖+3 with 𝑙(𝑤𝑖) = … = 𝑙(𝑤𝑖+2). This can be
replaced by𝑤𝑖, 𝑤′

𝑖+1, 𝑤′
𝑖+2, 𝑤𝑖+3 with 𝑙(𝑤𝑖) > 𝑙(𝑤′

𝑖+1) = 𝑙(𝑤′
𝑖+2) <

𝑙(𝑤𝑖+3).

Points (a), (b1), (b2), (b3) can be easily seen by inspection. Now
choose 𝑧 ∈ 𝐺 with 𝑙(𝑧) = minlev(𝑥, 𝑦) and choose a geodesic from 𝑥
to 𝑦 which contains 𝑧. Using the procedures (b1), (b2), (b3) one can
deform this geodesic.

Definition 38. We call a geodesic standard if it satisfies the properties of the
lemma.

Remark 24. It is not difficult to show, that the points 𝑣𝑟, … , 𝑣𝑠 are exactly
the points 𝑧 with 𝑙(𝑧) = minlev(𝑥, 𝑦) such that 𝑧 is between 𝑥 and 𝑦.

Definition 39. 𝑎(𝑥, 𝑦) ∶= (𝑠 − 𝑟), i.e. the number of horizontal edges in the
standard geodesic.

We have 0 ≤ 𝑎(𝑥, 𝑦) ≤ 2.

Definition 40. Wewrite [𝑥, 𝑣𝑟, 𝑣𝑠, 𝑦] for a standard geodesic. See Figure A.4
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𝑥 𝑦≤ 3

𝑥′ 𝑦′≤ 2

𝑜

Figure A.5: Points on lower levels move closer together

a.3.3 Properties of 𝑉+

We now study properties of 𝑉+ ⊂ 𝑉.

observation: 𝑉+ is a totally geodesic subset: i.e. every geodesic
with endpoints in 𝑉+ is completely contained in 𝑉+.

𝑉+ consists of the vertices 𝑥 ∈ 𝑉 with 𝑙(𝑥) ≥ 0 such that there exists
a vertical geodesic from 𝑜 to 𝑥.

Lemma 20. Let 𝑥 ∈ 𝑉+ and 𝑙(𝑥) = ℎ. Then there exists a geodesic 𝑜 =
𝑣0, … , 𝑣ℎ = 𝑥, with 𝑙(𝑣𝑖) = 𝑖.

Definition 41. If 𝑥, 𝑦 ∈ 𝑉+, 𝑙(𝑥) = 𝑙(𝑦) = 𝑚, then we denote by 𝑑𝑚(𝑥, 𝑦)
the distance on the level, i.e. the length of the minimal horizontal path joining
𝑥 and 𝑦.

Lemma 21. Let 𝑥, 𝑦 ∈ 𝑉+ with 𝑙(𝑥) = 𝑙(𝑦) = 𝑘.

1. If 𝑑(𝑥, 𝑦) ≤ 1 and 𝑥′ resp. 𝑦′ are between 𝑜 and 𝑥 resp. 𝑦 and 𝑙(𝑥′) =
𝑙(𝑦′), then 𝑑(𝑥′, 𝑦′) ≤ 1.

2. If 𝑑𝑘(𝑥, 𝑦) ≤ 3 and 𝑥′ is between 𝑜 and 𝑥 with 𝑙(𝑥′) = 𝑚 < 𝑘. Then
there exists 𝑦′ between 𝑜 and 𝑦 with 𝑙(𝑦′) = 𝑚 and 𝑑𝑚(𝑥′, 𝑦′) ≤ 2.

Proof. By inspection of the graph.
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We now show that:

Theorem 20. 𝑥, 𝑦, 𝑧 ∈ 𝑉+, then (𝑥|𝑦)𝑜 ≥ min{(𝑥|𝑧)𝑜, (𝑦|𝑧)𝑜} − 1.

Proof. We will use the following formula for the (𝑥|𝑦)𝑜, 𝑥, 𝑦 ∈ 𝑉+:

(𝑥|𝑦)𝑜 = minlev(𝑥, 𝑦) −
𝑎(𝑥, 𝑦)

2
.

Indeed 𝑑(𝑥, 𝑦) = 𝑙(𝑥) + 𝑙(𝑦) − 2minlev(𝑥, 𝑦) + 𝑎(𝑥, 𝑦) thus (𝑥|𝑦)𝑜 =
1
2(𝑙(𝑥) + 𝑙(𝑦) − 𝑑(𝑥, 𝑦)) gives the formula. Note that 𝑑(𝑥, 𝑜) = 𝑙(𝑥) by
Lemma 20. We can now assume that (𝑥|𝑦)𝑜 is the minimum among the
three Gromov-products. We can assumewithout loss of generality that
𝑚 = minlev(𝑥, 𝑧) ≤ minlev(𝑧, 𝑦) = 𝑘. Let [𝑥, 𝑝1, 𝑝2, 𝑧] and [𝑧, 𝑝3, 𝑝4, 𝑦]
be standard geodesics.

𝑚

𝑥

𝑝1 𝑝2

×𝑝5

𝑧

𝑝3 𝑝4

𝑦

𝑝6

Figure A.6: Proof of Theorem 20, case 𝑘 > 𝑚

case 𝑘 > 𝑚: Choose 𝑝5 between 𝑝2 and 𝑦 with 𝑙(𝑝5) = 𝑘. Since 𝑝5 and
𝑝3 are both between 0 and 𝑦 we have 𝑑𝑘(𝑝5, 𝑝3) ≤ 1 by Lemma 21
(1). This implies 𝑑𝑘(𝑝5, 𝑝4) ≤ 3. Thus there exists 𝑝6 between 𝑝4
and 0 on level 𝑚 with 𝑑𝑚(𝑝2, 𝑝6) ≤ 2. Thus 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑝1) +
𝑎(𝑥, 𝑧) + 𝑑(𝑝2, 𝑝6) + 𝑑(𝑝6, 𝑧) ≤ 𝑙(𝑥) + 𝑙(𝑦) − 2𝑚 + 𝑎(𝑥, 𝑧) + 2. Thus
(𝑥|𝑦)𝑜 = 1

2(𝑙(𝑥)+ 𝑙(𝑦)−𝑑(𝑥, 𝑦) ≥ 1
2(2𝑚−𝑎(𝑥, 𝑧)+2) = (𝑥|𝑧)𝑜 −1.

case 𝑘 = 𝑚: By Lemma 21 (1) we have 𝑑𝑚(𝑝2, 𝑝3) ≤ 1.



122 appendix

𝑚

𝑥

𝑝1 𝑝2

𝑧

𝑝3 𝑝4

𝑦

Figure A.7: Proof of Theorem 20, case 𝑘 = 𝑚

subcase max(𝑎(𝑥, 𝑧), 𝑎(𝑦, 𝑧)) = 2: In this situation

min((𝑥|𝑧)𝑜, (𝑧|𝑦)𝑜) = (𝑚 − 1).

Now 𝑑𝑚(𝑝1, 𝑝4) ≤ 5, this implies (by inspection of the
graph) that 𝑑(𝑝1, 𝑝4) ≤ 4, and hence

𝑑(𝑥, 𝑦) ≤ 𝑙(𝑥) + 𝑙(𝑦) − 2𝑚 + 4,

and furthermore (𝑥|𝑦)𝑜 ≥ 𝑚 − 2.
subcase max(𝑎(𝑥, 𝑧), 𝑎(𝑦, 𝑧)) = 1: Then

min((𝑥|𝑧)𝑜, (𝑧|𝑦)𝑜) = 𝑚 −
1
2

.

Now 𝑑𝑚(𝑝1, 𝑝4) ≤ 3 and hence

𝑑(𝑥, 𝑦) ≤ 𝑙(𝑥) + 𝑙(𝑦) − 2𝑚 + 3.

I.e., (𝑥|𝑦)𝑜 ≥ 𝑚 − 3
2 .

subcase max(𝑎(𝑥, 𝑧), 𝑎(𝑦, 𝑧)) = 0: 𝑎(𝑥, 𝑧) = 𝑎(𝑦, 𝑧) = 0, then

min((𝑥|𝑧)𝑜, (𝑧|𝑦)𝑜) = 𝑚

and 𝑑(𝑥, 𝑦) ≤ 𝑙(𝑥)+𝑙(𝑦)−2𝑚+1 which implies that (𝑥|𝑦)𝑜 ≥
𝑚 − 1

2 .
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a.3.4 ln(2) is Optimal in Theorem 16

Corollary 3. Let (𝑉+, 𝑑) be the space we just defined, where we scale the
metric by the factor 𝛿. Let

𝜌(𝑥, 𝑦) =
sinh(𝑑(𝑥, 𝑦)/2)

cosh(𝑑(𝑥, 𝑜)/2) cosh(𝑑(𝑦, 𝑜)/2)

where 𝑜 = (0, 0) and let 𝜌 be the metric after applying the Frink construction.
Then 𝜌 is not bi-Lipschitz to 𝜌 for 𝛿 > ln(2).

Proof. Let 𝑥𝑛 = (1 − 2−𝑛, 𝑛) and 𝑦𝑛 = (−1 + 2−𝑛, 𝑛), then

𝜌(𝑥𝑛, 𝑦𝑛) =
sinh(𝑑(𝑥𝑛, 𝑦𝑛)/2)

cosh(𝑑(𝑥𝑛, 𝑜)/2) cosh(𝑑(𝑦𝑛, 𝑜)/2)

=
sinh(𝑑(𝑥𝑛, 𝑜)/2 + 𝑑(𝑜, 𝑦𝑛)/2)

cosh(𝑑(𝑥𝑛, 𝑜)/2) cosh(𝑑(𝑦𝑛, 𝑜)/2)

=
sinh(𝑛𝛿)

cosh(𝑛𝛿/2) cosh(𝑛𝛿/2)
𝑛→∞⟶ 1.

On the other hand for 𝜌(𝑥𝑛, 𝑦𝑛) we get

𝜌(𝑥𝑛, 𝑦𝑛) ≤
2𝑛+1−2

∑
𝑖=0

sinh(𝛿/2)
cosh(𝑑(𝑥, 𝑜)/2) cosh(𝑑(𝑦, 𝑜)/2)

≤
2𝑛+1−2

∑
𝑖=0

sinh(𝛿/2)
cosh(𝑛𝛿/2) cosh(𝑛𝛿/2)

≤ (2𝑛+1 − 2)
sinh(𝛿/2)

cosh(𝑛𝛿/2) cosh(𝑛𝛿/2)
𝑛→∞⟶ (2𝑛+1 − 2) exp(𝛿/2 − 𝑛𝛿).

This converges to 0 iff 𝛿 > ln(2) and diverges otherwise.
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a.3.5 The Constants in Lemma 8 are Optimal

Corollary 4. Let 𝛿 > 0. There exists a 𝛿-hyperbolic space (𝑋, 𝑑) and for
any large 𝑠0 > 0, there exist points 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that

𝑑(𝑥, 𝑜), 𝑑(𝑦, 𝑜), 𝑑(𝑧, 𝑜), 𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑥, 𝑧) ≥ 𝑠0,

and (𝜌(𝑥, 𝑦), 𝜌(𝑦, 𝑧), 𝜌(𝑧, 𝑥)) can satisfy at most the exp(𝛿)-quasi-metric
inequality.

Proof. Let (𝑋, 𝑑) be the graph space defined above and let 𝑜 = (0, 0),
𝑥𝑛 = (−1/2, 𝑛), 𝑦𝑛 = (0, 𝑛) and 𝑧𝑛 = (1/2, 𝑛). Then

𝜌(𝑥𝑛, 𝑦𝑛) = 𝜌(𝑦𝑛, 𝑧𝑛)

=
sinh(𝑑(𝑥𝑛, 𝑦𝑛)/2)

cosh(𝑑(𝑥𝑛, 𝑜)/2) cosh(𝑑(𝑦𝑛, 𝑜)/2)

=
sinh( (2𝑛−2)𝛿

2 )

cosh(2𝛿
2 ) cosh(2𝛿

2 )

and

𝜌(𝑥𝑛, 𝑧𝑛) =
sinh(𝑑(𝑥𝑛, 𝑦𝑛)/2)

cosh(𝑑(𝑥𝑛, 𝑜)/2) cosh(𝑑(𝑦𝑛, 𝑜)/2)

=
sinh(2𝑛𝛿

2 )

cosh(2𝛿
2 ) cosh(2𝛿

2 )
.

In particular

lim
𝑛→∞

𝜌(𝑥𝑛, 𝑧𝑛)
𝜌(𝑥𝑛, 𝑦𝑛)

= exp(𝛿).
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