
Dr. Asieh Parsania
Institut für Mathematik
Universität Zürich

MAT101: Programming
Group Project: Tetris Game

Loreno Heer

Deadline: December 13th, 2019 at 18:00

1 Objectives

In this project you will program a clone of the game ”Tetris“. We will use the python module
pygame to help us implement the game. The main tasks will consist of implementing graphics,
collision detection, game physics a highscore system and input handling. A template will be pro-
vided in which the code can be implemented. Additionally you are provided a file which specifies
the rules of the game. You do not need to follow the rules too closely, but the game has to work
in the end and look and feel like regular tetris.

If you have completed the main tasks you can come up with some exta functionality of your own
choosing.

2 Prerequisites

Every member of the group needs to know the basic of the python pygame library and should read
the game design tutorial: https://dr0id.bitbucket.io/legacy/pygame_tutorials.html.

Every member should document what they programm, also indicate which part of the code has
been written by whom. Also the code itself should be well documented using proper docstrings.

To use the pygame module you will have to install it by executing the following command from
the terminal:

python3 -m pip install -U pygame --user

You can test that it is working by executing the following command:

python3 -m pygame.examples.aliens

You can look at the source code of the example programs. They should be in the following directory:

∼/.local/lib/python3.5/site-packages/pygame/examples
You can change to this directory by typing the command:

cd ∼/.local/lib/python3.5/site-packages/pygame/examples

3 Guidelines

The following tasks are to be implemented in the file called template.py:

Task 1 (Graphics)
In this task one handles the loading of graphics and the drawing of graphics on the screen. The
draw board() function should take the board as input and draw each tile on the screen. You can
use graphics from the internet for the blocks. There is another similar function draw preview()

this function should draw a preview of the next piece that falls down. Write a text with the current
number of points somewhere.

https://dr0id.bitbucket.io/legacy/pygame_tutorials.html

Use pygame to create a gui and draw the graphics there.

An example implementation using the command line is provided.

Task 2 (Objects)
Have a look at the Board and Piece classes in the template. They define the game board and the
moving pieces. Not all methods are implemented. Complete them and make yourself familiar with
how those classes work. We use an 2 dimensional integer array internally to represent the board.
Any non zero value indicates a block of a piece. Different integers represent different colors. 0
indicates that the position is empty.

class Piece:

def init (self, blocks):

size = (len(blocks), len(blocks[0]))

Coordinates of the top left corner of the block

They are calculated so that the piece appears centered on top

self.x = (BOARD SIZE[0] // 2) − (size[0] // 2) − 1

self.y = 0

self.blocks = blocks

""" Returns a copy of the piece rotated clockwise

Note that in your game implementation you have to check

if the rotation collides with the pieces on the board.

It should not be possible to rotate if doing so results in

a collision.

"""

def rotated(self):

...

""" Change the coordinates of the Piece by the indicated amount.

For example move(1,0) moves it one block to the right.

move(0,−1) moves it one block down.
"""

def move(self, x, y):

self.x = self.x + x

self.y = self.y + y

class Board:

def init (self):

self.size = BOARD SIZE

self.blocks = [[0 for in range(self.size[1])] for in range(self.size[0])]

""" Returns a Board object where the piece has been added to it.

"""

def add (self, other : Piece):

...

""" Checks if the piece could fit at the current spot in the board

or if it may cause a collision. Returns false if it fits,

true otherwise.

"""

def o r (self, other : Piece) −> bool:

...

Have a look at the list shapes. This looks like this in the template:

SHAPES = [

[[0,1],

[1,1],

[0,1]],

[[2,2,2],

[2,2,2],

[2,2,2]]

]

Here we defined two pieces corresponding to the shape T and the block shape. Have a look at
the specification of tetris to define the other pieces. There should be 7 different pieces in total
(different up to rotation).

Task 3 (Main Loop)
In your main loop implement the basic game logic: If no piece is falling, create a new piece
(random.sample). Store the next piece in a variable next piece (this is used for the preview
window). If a piece is falling, in each iteration move the piece down the y position by 1. Check for
collisions and check if the end of the board is reached. If the piece can not move further, add it to
the board permanently: board = board + piece

Task 4 (Input)
In the main loop of your program (an example is given in the template), implement input handling.
At each iteration you should check if the user pressed any key (left, right, down, space, q). Then
implement the corresponding action: move the block left right or down, or rotate (Space). Quit
the program if q is pressed. Make sure that only valid moves are possible (ie. a block should not
be moved outside the screen or through other blocks) (See also collision detection below)

Task 5 (Collision Detection)
Write a function that takes as input a Board object and a Piece object. The board describes the
playing board with the pieces that are already fixed. The piece is the currently moving piece.
Each piece object has coordinates attached to it. Check if you can add the piece at the current
coordinates to the board without causing any collision. Return true or false depending on the
outcome.

Task 6 (Line detection)
Write a function which analyses the board and detects if there are any filled out full lines. If there
are any, remove those from the board and move the pieces that were above the full lines down
accordingly. Return the number of lines removed or the points gained.

Task 7 (Highscore system)
In this task one should load and save the highscores and usernames. Before playing a player should
enter his username which will then be stored with the score. The score should only be updated
in the file if it is greater than the previous score or if the user did not play before. The 10 best
scores should be stored in the file. Other scores should be discarded. The highscore table should
be displayed whenever one player quits or looses a game.

Task 8 (Extra Task)
Think about some extra(s) to implement in your game. You can take a look at the official tetris
specification for ideas.

Task 9 (Optional Task)
You can use the game code to create a different game of your own design. (Depending on what
you want to do, this can be easy or hard).

Feel free to ask me any questions you have while writing the project.

4 References

Make sure you read the documentation of the pygame module. (you dont need to understand
everything but you should understand the basics and especially all the parts that are used in the
code). You can also read some of the tutorials to understand how games are programmed.

• Pygame documentation: https://www.pygame.org/docs/

• Pygame tutorials: https://www.pygame.org/wiki/tutorials

• Free game assets (graphics and sounds): https://itch.io/game-assets/free

• More free game assets: https://www.garagegames.com/community/resources/view/23092

• The Spyder Python IDE: https://docs.spyder-ide.org/installation.html

• The PyCharm Python IDE: https://www.jetbrains.com/pycharm/

• The Eric Pytho IDE: https://eric-ide.python-projects.org/

• Emacs, the best editor (but difficult to use)1: https://www.gnu.org/software/emacs/

• Vim, the second best editor (also difficult): https://www.vim.org/

5 General Notes

• The goal of this project is to experience programming in a group. Discuss the project as a
group and then divide the tasks among yourselves.

• You should discuss your progress with the supervisor of the project. Whenever you have
questions about your project, feel free to ask them during the exercise class or post them in
the forum.

• Once you have written your code you should briefly describe your results. You should include
interesting examples and illustrations (if they are part of your project).

• To hand in your project, just send an email to the supervisor of your project. Make sure
that it is clear who is responsible for which task.

• It is important that you understand the entire code of your group, not just the part that
you have written yourself. In particular, you should be familiar with the prerequisites.

• During the last week of the semester, every group will have a 20-minute presentation of their
project. Each member of the group should prepare a 4-minute presentation of their own code
and be ready to answer questions about the entire project.

• For the project you will be graded as a group, but for the presentation you will be graded
individually. Together the project and the presentation account for 30 percent of your final
grade.

• The presentations will take place during the last week of the semester.

1Emacs and Vim heavily rely on keyboard use and do not have much mouse functionality

https://www.pygame.org/docs/
https://www.pygame.org/wiki/tutorials
https://itch.io/game-assets/free
https://www.garagegames.com/community/resources/view/23092
https://docs.spyder-ide.org/installation.html
https://www.jetbrains.com/pycharm/
https://eric-ide.python-projects.org/
https://www.gnu.org/software/emacs/
https://www.vim.org/

	Objectives
	Prerequisites
	Guidelines
	References
	General Notes

